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I find that accounting for the general equilibrium effects operating through monetary
policy reduces the estimated two-year multiplier from 1.5 to 1. This result shows that
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the need for cross-sectional identification strategies that account for heterogeneity in
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1. Introduction

Cross-sectional methods are increasingly used in macroeconomics, international and spa-
tial economics to study how the economy responds to aggregate shocks. When households,
firms, or regions differ in their exposure to these shocks, a comparison of their relative
responses recovers the elasticity of the cross-sectional outcome to the aggregate shock.
Examples include fiscal, trade, and monetary policy, among other economic settings in
which heterogeneous exposure to aggregate shocks can be exploited for identification.!

These methods are designed to identify partial-equilibrium, or micro-level, elasticities.
This requires separating the direct effect of the shock from the aggregate effects it sets off
in general equilibrium. The typical empirical strategy combines time fixed effects, which
absorb the aggregate effects, with cross-sectional differences in exposure, which provide
the variation needed to isolate the direct effect. Throughout this paper, I refer to these
cross-sectional elasticities as portable? elasticities, echoing the terminology introduced by
Nakamura and Steinsson (2018). Such elasticities are valuable for their external validity
and their role in policy evaluation and counterfactual analysis. By isolating well-identified
responses to shocks, they enable progress on important questions that aggregate time
series alone cannot resolve.

But this strategy rests on a strong identifying assumption: that exposure to the shock is
uncorrelated with sensitivity to aggregate variables that co-move in general equilibrium.
In practice, the same characteristics that drive exposure to one policy often also shape
sensitivity to others. For instance, regions more exposed to fiscal expansions may also be
more or less sensitive to interest rates, which typically respond to fiscal policy. In such
settings, cross-sectional variation in exposure does not isolate the direct effect of the shock.
Identification fails because the estimated elasticity is contaminated by heterogeneous
responses to general equilibrium effects. I refer to such environments as HEGE settings,
short for heterogeneous exposure to general equilibrium effects. This paper asks: How can
portable elasticities be reliably identified in such environments?

I provide a new framework that makes it possible to identify portable elasticities
in HEGE economies. The approach combines elements from cross-sectional and time-
series analysis to decompose the elasticity estimated using the typical two-way fixed
effects (TWFE) design into the portable elasticity of interest and a HEGE term. I use the

framework to estimate cross-sectional fiscal multipliers in the US, allowing States to differ

Examples include fiscal and tax policy (Nakamura and Steinsson 2014; Zidar 2019; Pennings 2021; Parker
et al. 2013), credit supply (Mian and Sufi 2014), monetary policy (Ottonello and Winberry 2020; Peydrd, Polo,
and Sette 2021), trade shocks (Autor, Dorn, and Hanson 2013, 2021), investment elasticities (Zwick and Mahon
2017), wealth effects (Guren et al. 2021; Chodorow-Reich, Nenov, and Simsek 2021), among others.

2 use the term portable to describe elasticities estimated at different levels of aggregation that capture the
cross-sectional, direct effect of an aggregate shock while holding other aggregates fixed. Depending on the
context, this may correspond to an individual optimization problem (e.g., marginal propensities to consume)
or to a partial-equilibrium elasticity where some local market clears(e.g., cross-sectional multipliers).



in their exposure to changes in both defense spending and interest rates. The two-year
multiplier drops from 1.5 to 1 when applying the decomposition. This finding challenges
the view that TWFE estimates of cross-sectional fiscal multipliers are independent of the
monetary stance. The estimated portable multiplier is smaller for two reasons: (i) US
States that are more exposed to defense spending are also less sensitive to monetary policy
shocks, and (ii) monetary policy responds to an expansionary defense spending shock by
tightening interest rates. Finally, I develop a two-region TANK model, combining features
of Nakamura and Steinsson (2014) and Herrefio and Pedemonte (2025), to interpret the
empirical findings. The model analogue of the TWFE multiplier can vary sharply across
monetary regimes once HEGE is present, challenging its usefulness for bounding the
aggregate multiplier. In contrast, the portable multiplier remains stable across regimes
and maintains its ability to provide upper and lower bounds on the aggregate effects of
fiscal policy shocks.

The Identification Challenge. First, I establish the conditions under which HEGE rep-
resents an identification challenge to elasticities estimated using the following TWFE
specification:

(1) Yiteh = BrSix€xt + Ajp + Ay + €11y

where y;; is the outcome of unit i at time t (e.g., local GDP), s;, denotes the exposure of
unit i to an aggregate variable X, and ey; is an innovation to X in period t. Consider an
economy® where units differ in their exposure to two aggregate variables: G, the variable
of interest (e.g., government spending), and R; (e.g., monetary policy rate). Then it can be
shown that the estimate of 3 from a TWFE regression like (1) converges to:
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where ey is an innovation to Gy, sj; is unit i's exposure to k € {G, R} and y measures the
differential response to R, conditional on s;,. [35 is the portable elasticity at horizon h.*
This expression highlights that two objects determine whether changes in R are fully
differenced out. First, a time-series object - denoted by Ry - that captures the realization
of R conditional on the realization of the shock of interest, eg. For example, in a fiscal
setting, this could represent the response of monetary policy to government spending

3Concretely, consider a unit-level outcome that evolves according to: Y;; = f x SigGt +7y X SipRe + g + Uy + Uy

*Hovering the cursor over frequently used in-text mathematical symbols displays brief descriptions of their meaning.
This feature is supported only in Adobe Acrobat or PDF-XChange Viewer. They will not appear in most browser-based
and (macOS) Preview viewers.



or tax policy shocks. The time series term will be different from zero when the shock of
interest triggers an endogenous - or general equilibrium (GE) - response in R.

Second, a cross-sectional term - denoted by ¢ - that measures whether the determi-
nants of exposure to G are correlated with those affecting exposure to R. For example, are
regions that receive more military spending also more or less sensitive to interest rate
changes? The cross-sectional term will be different from zero when the sensitivities of
economic units to G and R are correlated in the cross-section.

The TWFE specification implicitly assumes that the cross-sectional heterogeneity used
for identification only drives exposure to the shock of interest and not to any aggregate
variable that the researcher intends to difference out. This is a strong assumption for many
empirical applications where exposure shifters often reflect structural characteristics of
economic agents (e.g., demographics, industrial composition, financial constraints). It is
plausible that such characteristics drive the response to multiple aggregate variables.

This poses a clear identification challenge: we cannot rely on time-fixed effects alone
to control for general equilibrium responses. The estimated coefficients reflect not only
the direct effects of the shock of interest but also the effects through the response in other
aggregate variables:

©) é’h"ﬁﬁ*‘YX@XRmG'
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This second component, which I label the HEGE term and denote by Qy, acts as an
additional treatment effect. It measures how the endogenous and dynamic response
of R to ey affects the outcome of units relatively more exposed to G. Specifically, for a
given general equilibrium response Ry, the contribution of the HEGE term depends on
the covariance between exposure to the shock of interest and exposure to the general
equilibrium response.

This creates two concerns. First, the sign of the bias introduced by HEGE is not dictated
by economic theory alone, but by the sign of ¢, the correlation between exposure shifters
in the cross-section. As a result, it is possible for general equilibrium forces that attenuate
the aggregate effect of a shock, such as contractionary monetary policy in response to
a fiscal expansion, to increase the estimated cross-sectional effect, depending on the
structure of the data. Second, studies using different exposure shifters may be correlated
with sensitivities to different aggregate variables, leading to variation in estimated effects
even when studying the same aggregate shock. These issues highlight the importance,
both for interpretation and for empirical consistency, of separating the direct effect from
the component driven by heterogeneous exposure to general equilibrium forces.



Decomposition Framework. 1develop a framework that brings in additional information to
identify portable elasticities in HEGE economies. Its goal is to decompose f ;, in expression
(3) into a portable component [51; and an HEGE component Q. Specifically, I develop an
estimation procedure for the latter term. The framework is based on the results in McKay
and Wolf (2022) and Barnichon and Mesters (2023), who show that reduced-form impulse
responses to contemporaneous and news shocks are sufficient to construct dynamic
counterfactuals in a general class of linear models. I adapt these results to a different
object of interest: the identification of cross-sectional elasticities clean of HEGE.

The methodology combines cross-sectional and time-series analysis in three steps.
First, a cross-sectional step estimates the response of the outcome to the aggregate vari-
able we intend to difference out, R, conditional on Sig> the exposure shifters used for
identification. Second, a time series step estimates a sequence of counterfactual innova-
tions to R that replicate the time path of R conditional on the shock of interest eg;. The
final step uses the cross-sectional responses from the first step to evaluate the propagation
of the innovations estimated in the second step. This provides an estimate of ), for each
horizon h. Finally, Bﬁ , the estimated portable elasticity at horizon h, is given by 3;, — Q.

Applying the decomposition requires one additional input relative to the TWFE strat-
egy: exogenous variation in the aggregate variable (or variables) that confound identifi-
cation. The specific nature of this variation — whether contemporaneous or involving
news (or anticipated) shocks — depends on the structure of the data-generating process. I
distinguish three cases: static, dynamic without anticipation effects, and dynamic with
anticipation effects, each imposing different informational requirements for identifying
portable elasticities.

Before turning to the implementation of the decomposition in each case, I show that
the same source of exogenous variation can also be used to test the presence of HEGE.
The test is straightforward to implement within the TWFE specification: it requires adding
an interaction between s;, and the source of exogenous variation in the aggregate variable
of interest. For example, one can test whether exposure to fiscal policy is correlated with
exposure to monetary policy by adding an interaction between s;, and the interest rate,
instrumenting the latter with a well-identified series of monetary shocks. A statistically
significant coefficient on this interaction term is evidence of HEGE, provided the aggregate
variable responds to the shock of interest. Importantly, the test relies only on Sig, the
exposure shifters used to study the shock of interest, and does not require knowledge of
the true exposure shifters for other aggregate variables, such as s;, in the above example. If
the test finds evidence of HEGE, the decomposition framework uses the same exogenous
variation to estimate and remove the associated bias.

In static environments, fluctuations are driven by purely transitory shocks, and the
framework can be implemented using any observed contemporaneous shock to the GE



variable R. Although of little empirical relevance, I present this setting to discuss how
my framework relates to a common robustness check used in the cross-sectional litera-
ture. This robustness check - commonly referred to as control function approach - aims to
address the HEGE omitted variable bias by including an interaction term between the
exposure shifter to the shock of interest, s;,, and the endogenous aggregate variable that
the researcher suspects is not being differenced out, R. The underlying assumption is
that this interaction term controls for the differential effects of R, without the need to use
exogenous variation in R. In static settings, I show that my framework and the control
function approach yield equivalent results. They both identify the true portable elasticity.

However, this equivalence result breaks down in dynamic settings, a characteristic
feature of most empirical applications. Once dynamics are at play, the control function
approach yields inconsistent estimates of portable elasticities because it cannot control
for the dynamic path of the GE variable conditional on the shock of interest. It can only
control for dynamic paths of the GE variable that lie in the subspace generated by variation
orthogonal to the shock of interest.”> By contrast, the decomposition framework provides
an estimation strategy that explicitly accounts for the dynamic behavior of macroeconomic
variables. Thus, my approach is robust to general macroeconomic settings and represents
an improvement over the control function approach.

The dynamic settings can be separated into two cases. First, I show how to imple-
ment the framework in dynamic settings without anticipation or forward-looking effects
(Markov economies). In such cases, identification requires no additional information
beyond the static case: contemporaneous innovations in R suffice to identify the HEGE
term and the portable elasticity across horizons.

In settings with forward-looking dynamics, where both contemporaneous and ex-
pected realizations of variables affect current responses, identification of QO additionally
requires news shocks to the expected future path of the GE variable (McKay and Wolf
2022; Barnichon and Mesters 2023). Because such shocks are difficult to obtain, I outline
how the framework can be applied under limited information and use model simulations
to assess estimation performance. Across both Markov and forward-looking economies,
the framework improves on the TWFE and control function approaches, even when only

contemporaneous innovations to R; are available.

Empirical Application . Iillustrate how to implement the framework by estimating US
cross-sectional fiscal multipliers using State-level data, perhaps the most influential em-
pirical application to date. There is consensus that an advantage of cross-sectionally

SLetting Rg denote the path of R in response to the shock of interest ezt and Ry its path in response to
any residual variation (e.g., a pure monetary shock if R is the interest rate), the control function approach
can only control for paths of R proportional to R;. If Rg # KRy, where « is a constant, the control function
approach fails.



identified multipliers is their independence from general equilibrium effects, in particu-
lar, those operating through the response of monetary policy. I study whether this is the
case: Is monetary policy differenced out in the cross-section of US States? For estimation,
I use the dataset on local defense spending built by Dupor and Guerrero (2017) and the
series of Romer and Romer (2004) monetary shocks. Using specification (1), which is the
standard in the literature, I estimate a 2-year multiplier of 1.5. Using the decomposition
framework, I estimate a portable multiplier of 1. This difference implies a positive HEGE
term. This is because US States that are more exposed to defense spending shocks are also
less sensitive to monetary policy and, on average, interest rates increase in response to de-
fense spending shocks. Together, these two imply an upward bias in the TWFE estimate.®
This finding challenges the independence of TWFE estimates of the cross-sectional fiscal
multiplier from the monetary regime and underscores the importance of GE effects in
shaping cross-sectional estimates.

To interpret the empirical estimates, I build a two-region New Keynesian model with
heterogeneity in exposure to fiscal and monetary policy. The framework combines the
structure of Nakamura and Steinsson (2014), who study government spending in a two-
region representative agent setting, with the two-region TANK features of Herrefio and
Pedemonte (2025), who introduce hand-to-mouth households but abstract from fiscal
shocks. The model delivers theoretical analogues of the TWFE cross-sectional multi-
plier, the HEGE term, and the portable multiplier, and allows me to decompose the
cross-sectional effect into distinct channels. In particular, I separate the usual demand
forces—expenditure switching across regions and intertemporal substitution due to rela-
tive price changes—from a HEGE channel that arises when regions differ in their respon-
siveness to interest rate movements. HEGE acts as an additional treatment that pushes
the TWFE cross-sectional multiplier away from its portable value.

Previous work has argued that cross-sectional multipliers can be interpreted as bounds
on the aggregate effects of fiscal policy - serving as an upper bound under conventional
monetary policy, where contractionary interest rate responses are differenced out, and
as a lower bound at the zero lower bound (Chodorow-Reich 2019; Dupor et al. 2023).
My framework shows that these conclusions need not hold once HEGE is present. The
TWEFE cross-sectional multiplier can vary widely across regimes, sometimes even moving
in the opposite direction of the aggregate multiplier, and may fail to provide a reliable
bound. In contrast, the portable multiplier, isolated by my decomposition, remains stable
across monetary regimes and retains its interpretation as a partial-equilibrium object
that can provide a reliable bound on the aggregate multiplier. Finally, the model delivers a

®These findings can be translated into the notation used to define (O, as follows. Increases in the interest
rate have contractionary effects on local production, so y< 0. The fact that high s;, States are less sensitive
to interest rates implies ¢< 0 and a monetary tightening following the fiscal shock implies R;> 0. Taken
together, this yields Qp, =y x ¢ x Ry > 0 and an upward bias in the TWFE estimates.



sufficient statistic that summarizes the precision loss from relying on limited news shocks.
Calibrating this statistic to the US setting indicates that the decomposition recovers the
portable multiplier with only limited error, even in a forward-looking New Keynesian
setting.

Related Literature. This paper contributes to three strands of the macroeconomics lit-
erature. First, it is related to the empirical literature that uses cross-sectional methods
to identify the effects of shocks. Nakamura and Steinsson (2018) provide a general re-
view of the state and scope of this literature, while Chodorow-Reich (2020) focuses on
the specifics of cross-regional analysis. Nakamura and Steinsson (2018) introduce the
concept of portable statistics as well-identified moments or parameters that can be used
to distinguish between models and imported across economic settings, precisely due to
their partial equilibrium interpretation. The typical empirical design in this literature
relies on time fixed effects’ to absorb GE effects. The papers that acknowledge that time
fixed effects may not be enough address the issue with a control function approach, in-
cluding an interaction term between the exposure shifter used for identification and the
aggregate variable that moves in GE. First, I show that, in typical macroeconomic settings,
the control function approach generally fails to control for HEGE. Second, I propose
a methodological framework that identifies PE elasticities in HEGE economies and is
robust to the dynamic patterns of macroeconomic data. The estimation framework in this
paper extends the use of cross-sectional methods to macroeconomic settings in which
cross-sectional variation plus time fixed effects are insufficient to control for GE effects.
Building on this literature, a related strand of research highlights other limitations of
cross-sectional identification. Canova (2024) emphasizes that, specifically in cross-regional
estimates, heterogeneity in the autoregressive dynamics of local outcomes can bias results,
even when general equilibrium forces are not the main concern. His proposed estimator
delivers an object distinct from the PE elasticity at the core of this paper, underscoring
that cross-sectional designs may fail for reasons beyond the HEGE channel that I study.
The question of how to translate cross-sectional effects into aggregate effects led to a
growing literature on aggregation. Aggregation strategies include back-of-the-envelope
calculations, model-based aggregation, and econometric frameworks that employ panel
and factor structures (Sarto 2024; Matthes, Nagasaka, and Schwartzman 2024)8. Several
papers combine reduced-form estimates at different levels of aggregation with structural
assumptions, as in Guren et al. (2018), Chodorow-Reich, Nenov, and Simsek (2021), Guren
et al. (2021),Wolf (2023b) and Wolf (2019). I complement this strand of work by provid-
ing the clean free-of-GE inputs needed for both back-of-the-envelope and model-based

’With a single cross-section, the intercept plays the role of time fixed effects in panel settings.
8These papers propose econometric frameworks that estimate aggregate effects directly using a Bayesian
approach in Matthes, Nagasaka, and Schwartzman (2024) and a factor model in Sarto (2024).



aggregation.

The methodological framework that I propose is closely related to important advances
in the computation of macroeconomic counterfactuals made by McKay and Wolf (2022),
Barnichon and Mesters (2023) and Caravello, McKay, and Wolf (2024). McKay and Wolf
(2022) show that reduced-form time series responses to contemporaneous and news policy
shocks are sufficient to construct policy rule counterfactuals in a general class of linearized
models. Barnichon and Mesters (2023) show that these impulse responses are also enough
to characterize the optimality of the policy. My decomposition framework builds on their
work and extends it to the cross-sectional setting. I show how to combine cross-sectional
and time series reduced-form responses to aggregate shocks to purge cross-sectionally
identified elasticities from HEGE. The decomposition that I propose can be interpreted as
computing cross-sectional elasticities under the counterfactual scenario of homogeneous
exposure to GE.

The empirical application speaks to the literature on cross-sectional fiscal multipliers.
Examples of this literature are Nakamura and Steinsson (2014), Chodorow-Reich et al.
(2012), Auerbach, Gorodnichenko, and Murphy (2020), Demyanyk, Loutskina, and Murphy
(2019), Dupor and Guerrero (2017),Dupor et al. (2023), Pennings (2022), Pennings (2021),
among others. Chodorow-Reich (2019) provides a comprehensive review of the lessons
from this literature. One of the advantages attributed to cross-sectional methods for the
estimation of fiscal multipliers is their independence from the state of the economy. In
particular, their independence from the stance of monetary policy.’

At the same time, it is well documented that sensitivities to interest rates vary substan-
tially between economic units (e.g., households, firms, or regions). For example, Herrefio
and Pedemonte (2025) find that US cities with lower per capita income are more respon-
sive to monetary policy, a pattern that they show is consistent with a New Keynesian
model of a monetary union with heterogeneous shares of hand-to-mouth households.
Building on these insights, I revisit the estimation of cross-sectional fiscal multipliers by
explicitly accounting for heterogeneity in monetary policy responses. My contribution is
twofold. First, I show that heterogeneity in monetary policy responses across US states is
correlated with their exposure to defense shocks. This implies that time fixed effects do
not fully difference out monetary policy responses. Second, I introduce new estimates that
control for these differential effects, thereby providing estimates of the cross-sectional
fiscal multiplier that can be more confidently interpreted as independent of the monetary
policy stance.

The strength of the monetary policy response to fiscal shocks is an important determinant of the size of the
aggregate fiscal multiplier. Theoretical and empirical papers on the interaction between fiscal and monetary
policy include Christiano, Eichenbaum, and Rebelo (2011),Leeper, Traum, and Walker (2017), Ramey and
Zubairy (2018), Ramey (2019),Riera-Crichton, Vegh, and Vuletin (2015),Auerbach and Gorodnichenko (2015),
Bachmann and Sims (2012), Farhi and Werning (2016), Canova and Pappa (2011),Kato et al. (2018),DeLong and
Summers (2012), Cloyne, Jorda, and Taylor (2020),Hack, Istrefi, and Meier (2023), among many others.



Layout. The remainder of the paper is structured as follows. Section 2 discusses the
identification challenge at the core of the paper and presents a diagnostic test for it.
Section 3 presents the estimation framework. Section 4 presents the empirical application.
Section 5 presents a 2-region New Keynesian model to interpret the empirical findings
from the previous section. Lastly, Section 6 concludes.

2. When does HEGE challenge portability?

First, this section introduces a simple framework to illustrate the identification challenge
that arises when units are differentially exposed to aggregate variables that comove with
the shock of interest. Next, it presents a diagnostic test to detect whether HEGE is present
with respect to some aggregate variable R that the researcher intends to difference out.
To build intuition, consider a simple HEGE economy in which units differ in their
exposure to an aggregate shock of interest eg: and to one other aggregate variable Ry:

(4) Yit = Bsigegt + 'YsirRt +U;+ U+ Uy,

where Y}; is the outcome (e.g., local GDP) of unit i in period ¢ and s;; denotes the unit-
specific exposure shifter to the aggregate variable k. Unit, time, and unit-time idiosyncratic
shocks are denoted with a u plus the corresponding sub-indices. It can be shown that
)10

specification (1)*”, which uses unit and time fixed effects, recovers:

cov [Ry,p, €gt] €OV [sig) Sir]
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The above expression clarifies the conditions under which the dynamic effects that operate
through R are not fully differenced out. There are two distinct objects: one related to time
series variation - Rg= {Rh\G}I;;IZO - and one related to the source of cross-sectional variation
used for identification - ¢. The former measures the response of R to the shock of interest
at different points in time. In other words, R, captures the dynamic path of R conditional
on the realization of the shock of interest. For example, in a fiscal application, this could
be the response of federal tax rates to federal government spending shocks.

The cross-sectional term, ¢, measures the degree to which unit-specific exposure
shifters to different aggregate variables correlate with each other. It informs whether
the driver of exposure to our shock of interest eg; is systematically correlated with the
driver of exposure to R. For example, are regions that receive more government spending
systematically more or less sensitive to taxation or to monetary policy? Expression (5)

1011 terms of this example, specification (1) is Y;;, j, = BrSig€gt + Ain + Aeh + €jripe



highlights that the assumption in a TWFE strategy like (1) is that the source of cross-
sectional heterogeneity used for identification only drives variation in exposure to the
shock of interest and not to any of the variables that the researcher intends to difference
out.

This assumption may be hard to satisfy in several macroeconomic applications where
the type of unit-level characteristics that we use to proxy for heterogeneity in exposure
to one aggregate shock are also likely to affect exposure to other aggregate variables.
For example, in the fiscal literature, constrained or hand-to-mouth households are an
important determinant of the sensitivity of output to fiscal stimulus. These households
play a similar role when it comes to the sensitivity of output to monetary policy shocks.

Violations of the identifying assumption lead to omitted-variable bias, whose sign
and magnitude can vary depending on the source of heterogeneity. As a result, studies
using different sources of cross-sectional variation (or focusing on different time periods)
may obtain different elasticities for the same aggregate shock, due to loading on different
aggregate variables that move in general equilibrium (GE). Such situations decrease the
portability of cross-sectionally identified elasticities not just because some of the general-
equilibrium responses are part of the estimates, but also because how these GE responses
affect estimates depends on the cross-sectional and time-series variation that is being
used.

2.1. Test for HEGE

Next, I present a test to diagnose whether HEGE poses an identification threat. In economic
terms, two conditions must be satisfied for HEGE with respect to a given aggregate variable
R to pose an identification problem. First, R must respond to the shock of interest; that is,
it must be one of the macroeconomic variables that move in general equilibrium. Second,
at the cross-sectional level, units with different exposures to the shock of interest must
exhibit heterogeneous responses to changes in R.

I begin from the assumption that the researcher has identified a set of aggregate
variables that respond in general equilibrium and that she intends to difference out.
This set can be informed using time series econometric tools, economic theory, or a
combination of both. The test proposed here focuses on the second condition for HEGE,
which reflects the novel contribution of this paper.

The goal is to test whether the exposure shifters used for identification, eg, drive
heterogeneity in cross-sectional responses to a given aggregate variable R. Let €+ denote a
source of exogenous variation in R (e.g., a monetary policy shock). The test exploits varia-
tion in e, to identify differential responses to R, conditional on Sig- It can be implemented

10



via the following regression.
(6) Yiten = Cp x SigRe + Aip + A+ € forall heH,

where the interaction s;R; is instrumented with s;,€;¢, and A, Ay, are horizon-specific
unit and time fixed effects. In regression (6), ¢; captures how the response of Y, to
changes in R; varies with s;,. A statistically significant ¢, indicates that units that are
more exposed to the G shock also respond differently to R at horizon h, violating the
identification assumption of the TWFE approach. In sum, evaluating HEGE in relation to
the aggregate variable R amounts to testing whether these coefficients ¢;, are jointly zero:

(7) Hp: ¢,=0V heH, Hy: ¢, #0 forsome heH.

Rejection of the null hypothesis, that is, finding ¢;, # 0 for some h, implies that units
with different levels of exposure to the shock of interest, as captured by s;,, exhibit system-
atically different responses to changes in the aggregate variable R. In this case, estimates
from cross-sectional regressions that rely on time fixed effects are likely to confound
the direct effect of the shock with general equilibrium responses operating through R.
Detecting such patterns in the data is a signal that HEGE may be an identification threat
and that a correction is necessary, such as the decomposition framework proposed in
Section 3.

The test can be easily generalized to assess exposure heterogeneity with respect to
multiple aggregate variables. Specifically, several interaction terms of the form s;; x R’t‘ s
each instrumented with s;; x e’;t, can be included for a set of variables {R¥}, x . A joint
test of significance on the corresponding coefficients {?:;(l} then provides a diagnostic for
which general equilibrium channels pose a threat to identification in the cross section.

Importantly, the informational cost of this diagnostic is relatively low. The test requires
only a source of exogenous variation in the aggregate variable R that the researcher aims
to difference out. This variation is the same as that used to study the effects of R itself,
for example, monetary or tax policy shocks, and can often be recovered using structural
time series methods such as VARs or narrative identification approaches. In addition,
the test does not require knowledge of the true driver of unit-level exposure to R. This is
because, in a linear regression framework, what matters for the estimation is the linear
relationship between the true exposure shifter and s;,. Therefore, as long as s, is used for
identification and is linearly related to the true exposure shifter, the test remains valid.

Recap. This section clarifies when HEGE poses a threat to the identification of portable

elasticities. Specifically, HEGE threatens the validity of the TWFE strategy when (i) the GE
variable responds to the shock of interest and (ii) the exposure shifter used for identifica-

11



tion is correlated with heterogeneity in responses to that GE variable. I provide a simple
test to detect such threats by leveraging exogenous variation in the GE variable. A rejection
of the null signals that the identifying variation used in the cross-section is also picking
up differential responses to general equilibrium forces. In such cases, cross-sectional
estimates are likely to conflate the direct effect of the shock with these indirect channels.
The next section presents a decomposition framework to estimate portable elasticities by
separating them from the HEGE component.

3. Decomposition Framework

This section presents a decomposition framework to identify portable elasticities in HEGE
economies. The goal is to decompose (3 1, the elasticity estimate for horizon h of the
TWFE specification, into two distinct components: a portable component, (31;, and a HEGE
component, denoted by Q.

The HEGE component O, measures how the response of a GE variable, namely R,
affects the outcome of units with different levels of exposure to the shock of interest. In
summary, the framework I propose uses reduced form cross-sectional responses to R
to remove the effect of the expected response of R from the TWFE estimates. I outline
how to implement this procedure under varying assumptions about the structure of
the economic environment. In each case, identifying the HEGE term requires access to
exogenous variation in R, but the nature of this variation depends on the specific setting. I
distinguish three stylized cases in terms of their informational requirements and describe
how the methodology applies to each.

The first case corresponds to static economic environments. Here, both aggregate
and cross-sectional variables are assumed to be driven by purely transitory, serially un-
correlated shocks. Implementing the framework requires access to contemporaneous
innovations in the GE variable, R. Although this case has limited empirical relevance
for macroeconomic questions, it provides a useful benchmark to compare the proposed
framework with the control function approach, which consists of including the interaction
Sig * Ry as a control in the estimating equation. I show that under the static setting assump-
tions, the two approaches yield equivalent results. Both consistently estimate portable
elasticities. However, the control function approach yields inconsistent estimates when
dynamics are introduced, whereas the proposed framework remains valid.

The second case considers dynamic environments that admit a finite-order vector auto-
regression (VAR) representation (i.e. environments that satisfy a Markov structure). In
this environment, implementing the framework requires contemporaneous innovations
in R, just as in the static setting. This allows identification of the HEGE term, ), both at
impact and at different horizons (h > 0).

The third and most general case extends the framework to forward-looking environ-
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ments, where both current and expected future realizations of variables affect present
outcomes, such as in DSGE models. In these settings, identifying the HEGE terms requires
information not only on contemporaneous innovations in R, but also on news shocks
that shift expectations about the future path of R. This extension is built on the work of
McKay and Wolf (2022) and Barnichon and Mesters (2023), who show how time-series
reduced-form responses to contemporaneous and news shocks can be used to construct
counterfactuals at the aggregate level.

The remainder of this section presents each case in detail and then briefly outlines

how to conduct inference.!!

3.1. Static Setting

Consider an economy that can be characterized by the following system of equations:

Y

Yit = [3 X Sith +7Y X sirRt+ u; +us+ uit

Gt = OCRt + ugt
(Sl) Rt = 5Gt + Urt
ug; ~ N(0, Gi) Vk=g,r

< ~2
Sig ~ N(5, ng)
S $
Sir = Psjg + U, Sjg LU
s 2 Y 2
uir ~N(0, Gsr); u, ~ N(0, Gy);

where i denotes economic units (e.g., regions, households, firms) and t time. G; and
R; are two aggregate variables that are allowed to endogenously respond to each other.
ugt and u¢ have the interpretation of structural innovations to G and R, respectively.
The unit-level outcome Y;; is a function of both G; and R; plus unit, time and unit-time
idiosyncratic innovations. The cross-sectional variation in exposure to G and R is governed
by s;, and s;;, respectively. I assume that s;,, the exposure shifter to Ry, is linearly related to
Sig» the exposure shifter to G, with ¢ governing the strength of this relation. When ¢ =0,
the exposure shifters to G and R are uncorrelated in the cross section. I further assume

that the cross-sectional exposure shifters, s;, and s;,, are time-invariant and, therefore,

Si
independent of aggregate shocks. :
This economy is static in the sense that all fluctuations are driven by purely transitory
innovations. The object of interest is BP = B which measures the relative effect of a change
in G on the unit-level outcome, holding R fixed.!?
For illustration purposes, I consider a simplified setting with « = 0, thus shutting down

the endogenous response of G; to R;'3, and normalize the variance of idiosyncratic shocks

A detailed explanation on how to construct standard errors is relegated to Appendix A.6.

12The static nature of the problem implies that the cross-sectional elasticity for any horizon h > 0 is equal
to zero, thus I drop the subscript & for the remainder of this subsection.

BThe estimation steps and results that follow equally apply to a setting with two-way feedback. Appendix
Al presents detailed algebraic formulas for this setting.
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to unity. Consider a researcher who observes egt, an innovation in G, satisfying:
(8) Ugt = €gt + Ugt With  egr L Ty, €gt L Urt.

The typical estimation strategy consists of the following TWFE regression:
9) Vit = bx 5igGe + Ay + At + ey

Because G; may be endogenous, Sig€gt 18 used as an instrument for sith. Here, A; and A;

1

denote unit and time fixed effects, respectively. Given the assumptions'* made so far, it

can be shown that

(10) E[b] - B” =y x cov[s; Ry, sig€qt]

=7y x § x coV[Ry, €gt]

where y measures the response of Y; to a change in R, conditional on s;,, and ¢ captures

the correlation between s;, and s;,. Noting that the product v = yx¢$ captures the response

ig i
of Y; to a change in Ry, conditional on s;, - as opposed to s;; - yields:®
(11) E[b] - BP =¥ x cov[Ry, egt] = Q,

where Q denotes the bias associated with HEGE. In order to decompose bintoa portable
and an HEGE component, I propose an estimator for Q, such that :

(12) E[p"] = E[b- Q] = p*.

This is the key idea of the framework. The additional piece of information required to
estimate Q) is e+, an exogenous shock to R; satisfying:

(13) Urt = €t + ftrt, with et L Uy, €rt L €gt.

Equipped with eg: and ey, the estimation framework can be divided into three steps which
I sketch below:

YThe first-stage coefficient is equal to one. This follows from the normalization v[sj] = 1 and the definition
of egt, which implies cov[Gy, eg] = 1.
BReplacing s;, for its expression in terms of ¢, Sig and uf’ in the unit-level outcome yields:

y

Yit:ﬁ xsith+qu)><sigRt+y><uf’Rt+ui+ut+uit

y

~ S,
= [5 X Sl'th +Y X sigRt +7vY X uirRt +U;+ U+ uit,

where y is the parameter associated to the interaction term between s;; and R;.
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1. Cross-sectional Step. Estimates the response of Y; to e, conditional on s;.:
f/ X CO‘V[Rt, €rt]-

2. Time Series Step. The response of R to a unit change in e, - given by cov[Rt, €,¢] - may
differ from its response to a unit change in eg; - given by cov[Ry, €4t ]. This step estimates
these two responses to find the size of an e;+ shock that changes R by cov[Ry, egt]:

- B cov[Ry, €gt]

COV|Rt, €rt| X €7t = COV| Ry, €9t | = €t = ————.

[Rt, €rt] x €rt [Rt, €gt] = €rt cov[Rs, ert]

3. Final Step. From the cross-sectional step we know how units respond to a unit change
in e;+ and from the time-series step we know the size of the €;+ shock that replicates
the response of R after eg:. Evaluating the cross-sectional response at this €,+ shock
gives an estimate of Q:

CS Step

————> cov[Ry¢€
Y x coV[Ry, €r¢] % M =
coV[R¢, €rt]
| —
TS Step

Next, I present a detailed discussion on the implementation of each step.

Cross-sectional Step. The goal of this step is to identify the reduced form response of
Y; to both G and R, conditional on exposure to the shock of interest s;,. As mentioned
above, this requires access to a source of exogenous variation in R;. For example, if R;
is the interest rate, then a series of well-identified monetary policy shocks satisfies this
requirement.

The reduced form responses to changes in G; and R; can be estimated as follows:

(14) Yit =bx sigegt + C X sigert + }\i + }\t + €y

where each aggregate shock is interacted with s;,, the exposure shifter to G;. It can be
shown that this specification recovers the following two coefficients:

E[b] = B +7 x cov[Ry, eg], E[¢] = x cov[Ry, €rt] =7,
(15) =pP+ x5

—
Q

where § captures the response of R to an innovation in G. First, this regression identifies v,
the reduced-form response of Y; to a change in R;, conditional on Sig> from the interaction

term s;,€,+. Second, because this regression only exploits the variation in R; coming from

g
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€rt, the coefficient bis still a combination of the portable and HEGE components as in
the TWFE case. In this reduced-form specification, we explicitly omit the endogenous
variation in R;.

Alternatively, one could augment the TWFE regression (9) by incorporating s;,R; as
an additional interaction:
(16) Y = beF x $igGr + ¢ x SigRe + A+ Ap + el-CtF.
Under the assumptions of this setting, this regression identifies p” in one step as OLS
partials-out the correlation between G; and R;. This estimation strategy is often referred
to as the control function approach. In such a case, there is no need for the additional
time-series step that I discuss next. However, the control function approach works under
restrictive assumptions on the dynamics of the data generating process as I clarify in
the next Subsection. Because these assumptions are hard to justify in macroeconomic
environments, I outline the time series step to (i) show that the decomposition and control
function approach yield equivalent results in static settings and (ii) to ease the transition
to dynamic settings.

Time-series Step. The purpose of this step is two-fold. First, it estimates the response
of R; to each aggregate shock. Second, it uses these responses to compute the size of a
hypothetical e+ shock that matches the response of R to a unit change in eg. The time
series responses to each shock can be estimated using:

(17) Rt = vegr + aert + ert,
with the estimated coefficients converging to:
(18) E[V] = cov[Ry, egt] = 8, E[a] = cov[Rt, €r¢] = 1.

Here v denotes the estimated response of R to a unit change in eg; and a the estimated
response to a unit change in €,+. Next, I use these estimated responses to calculate a
hypothetical shock €+ that changes R; exactly by v. This hypothetical shock - denoted by
€t - is given by:

(19) €rt = = E[én] =0.

SN

Final Step. The final step uses ¢, the estimated reduced form response of Y; to R from
the cross-sectional step, to evaluate the effect of €;¢, the hypothetical shock to R from the
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time series step. This yields a consistent estimate of Q, the HEGE term:
(20) E[Q]=E[cx&rn] =¥ xb=Q.

A consistent estimate for the portable elasticity can be constructed as follows.

~

(21) BP=b-cxéen = E[pF]=pF,

where b and ¢ are estimated in the cross-sectional step and €, is estimated in the time
series step. As mentioned above, under the assumptions made in this section, this three-
step procedure yields an equivalent result to the control function approach.

Monte Carlo Simulations. The performance of the decomposition is illustrated using
Monte Carlo simulations. I simulate data from an economy characterized by the system
of equations presented above and estimate three different specifications: (i) Baseline, (ii)
Decomposition, and (iii) Control Function. Baseline corresponds to the TWFE regression.
Decomposition corresponds to the results of applying the framework presented above
and control function to the results from using specification (16). Figure 1 presents the
distribution of the estimated coefficients for each strategy in an economy with f =y =6 =
¢ = .5 and « = 0. The population values for the portable and HEGE terms are A = .5 and
Q =.125, respectively. There are two takeaways. First, the baseline estimates are biased
and centered on B¥ + Q = .625. Second, both the decomposition and control function
approach consistently estimate 3. Figure Al in Appendix A.1 shows that the same results
hold for an economy with two-way general equilibrium feedback between G and R (that
is, a# 0).

3.2. Dynamic Markov Settings - No anticipation effects

This subsection considers dynamic environments in which both aggregate and cross-
sectional variables follow finite-order vector autoregressive (VAR) processes - what I refer
to as Markov environments. These settings lie between static and forward-looking models
and serve two purposes. First, they highlight why the control function approach generally
does not deliver consistent estimates in dynamic contexts. Second, they allow me to
develop an identification strategy that provides consistent estimates of portable elasticities
under Markovian dynamics. In the forward-looking settings studied in Section 3.3, this
strategy yields an approximation that is easier to implement than explicitly modeling
expectations, as it relies on observed variation, such as contemporaneous innovations in
monetary or tax policy, commonly used in applied macroeconomics. For this reason, the
Markov setting is a useful benchmark for discussing implementation in environments
where forward-looking behavior is present but well-identified shocks to expectations are
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FIGURE 1. Static Monte Carlo Simulations - ¥ = .5

Distribution of point estimates for the Baseline, Decomposition and Control Function estimation strategies.
Based on 1000 repetitions with sample size of n = 100 and ¢ = 300 and parameterssetto 6= =y =¢ =.5.

limited or unavailable.

In Markov environments, aggregate and cross-sectional variables evolve according to
the following system of equations.

] )
Re] =1 7| R Urt

Yie= 2, BssigGr—s + > ViSirRe g+ Z‘blYi,t—l + U+ U+ ul?;,
s=0 k=0 =1

(S2)

where Gy and R; follow a VAR(p) process that allows endogenous responses to each
other’s structural shocks denoted by ug: and urt, respectively. The unit-level outcome Y;;
follows an AR(L) process that heterogeneously loads on contemporaneous and lagged
realizations of both G; and R, with the same exposure shifters applied uniformly across
all lags. All other features of the environment are as in the static setting described in
Subsection 3.1.

For exposition purposes, I use as an example an economy withP=1,S=K=L=0
and where G does not respond to R. As in the static setting, I normalize the standard
deviation of idiosyncratic shocks to unity. This yields familiar expressions that are helpful
in building intuition. Formally, the economy is characterized by:

Gt = pgGr-1 + Ugt,
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Rt = prRy_1 + 0Gt + Uy,

Y

Yie = B x8jgGe +y x sjpRe + 1y + Up + .

I refer to this as the AR(1) case. This simplified example departs from the static setting
only by introducing persistence in the aggregate variables. The parameters pg and p,
govern the strength of persistence in G and R, respectively.

The goal is to estimate Bﬁ, the dynamic differential response of Y; to a shock to G,
holding the time-path of R fixed. For the AR(1) example, this implies:

(22) Bh=Bxpf  Vh

where [31; measures the cumulative direct effect of a change in G; at horizon t + h.

Consider a researcher who observes an innovation in G, denoted by e, that satisfies:
(23) Ugt = €gt + ﬁgt with €gt L ﬁgt; €gt L Urt.

The TWFE estimation strategy can be implemented through the following panel local
projection for each horizon h:

(24) Yiton = br % 8igGr + Ny + Ay + €y

where s;,G; is instrumented with s;,€4; to address potential endogeneity concerns in
Gt. Here, by, measures the cumulative effect of a change in G; on Y}, j, for the unit with
average exposure. Horizon-specific unit and time fixed effects are captured by A;;, and A,
respectively. The estimate for b, converges to:

(25) E[by]= B, + Qp
—— ——
Portable Effect HEGE term

The first term is the portable component that measures the effect of interest, holding
the path of R fixed. The second term Q) captures the HEGE component that is now

horizon-specific. In the AR(1) case, these terms can be expressed as:16

E[by] = B cov[Gyyp, €gt] +ydcov[Ry,p, €gt]

h ..
h—
(26) =B xpg+ybxd) oy 'op.
— ]:O
BP
h Q,

cov[G,€gt]

=1, so I omit it for notational
V[eg]

16The assumptions on egt imply that the first-stage coefficient
simplicity.
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If =0 or 6 = 0, the HEGE terms vanish and the benchmark strategy recovers the true
portable effect. We can break down Qy, into two terms:

(27) Qp =y x cOV[Ryp, €gt]-

As in the static setting, the first term ¥ = y x ¢ measures the differential response of Y;
to a change in R, conditional on s;,. The second term measures the dynamic response of
Rto a shock to G.

Next, I outline how to implement each step of the decomposition to estimate Q) in
Markov settings. The additional input relative to the TWFE strategy is the same as in the
static setting - exogenous variation in the contemporaneous realization of R. In what
follows, I assume that, on top of the shock of interest €4, we observe a contemporaneous
innovation to R; - denoted by €,¢. I assume that this innovation satisfies:

(28) Ut = €rt +Urt, €t Ll & €l €gt-

This implies that e, is orthogonal both to any residual variation in R; and to the shock of

interest.!’

Cross-sectional Step. The goal of this step is to identify dynamic reduced-form responses
of Y; to G and R, conditional on s;,. For identification of the R responses, we exploit the
variation in R induced by the innovation €;+. The following local projection can be used to
estimate these reduced-form responses:

(29) YiHh = bh X sigegt +Cp X sigert + }\ih + }\th + €itihy

where each aggregate shock is interacted with s;,, the exposure shifter to G. First, this
specification identifies the same by, as the baseline regression.!® This is because the
estimation only exploits the variation in R that is not correlated with G. For the AR(1) case,
this implies

(30) E[by] = B cov[Gy,p,y €gt] + ¥ COV[Ry i, €gt]-

This last assumption is sufficient but not necessary. The HEGE term can be identified even if the two
observed aggregate shocks, egr and ey, are correlated as OLS partials out any shared variation.

1811 the general case in which the first-stage coefficient on egt is different from one, then the reduced form
regression identifies a rescaled version of the expression in (26). The rescaled version is given by kg x B,{W
where kg is the coefficient of the first stage and i)ZW is the 2sls coefficient of (26). Given that the decomposition
results are robust to arbitrary first-stage values, I omit them from the main outline. The important point is
that introducing the interaction between s;; and € does not directly address the omitted variable bias due to
HEGE.
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Let Rig= {cov[Ryp, egt]}io denote the conditional time path of R after an ey shock.
Second, this regression also identifies the response of Y; to R, conditional on s;, and
conditional on the path of R after a change in €:

(31) E[&h] = }N/ COV[RHh, ert]-

Let Rjp= {cov[R,p, €ft]}IhJ:0 denote the conditional time path of R after an €,+ shock.
Inspection of by, and ¢;, clarifies that the omitted variable bias due to HEGE is a function
of R/, while the estimated reduced-form response of Y; to R is a function of a different
source of variation, namely Rg.

In this example, replacing the covariances in terms of parameters yields:

h ..
N B h— . B
(32) E[by] =B xpp+vx8 o7 o}, E[¢p] =¥ x pl.
~— ]:0
ﬁP
h Qh

Here, the estimated coefficient on the interaction term Sig€rt is a function of the differential
sensitivity parameter y and the auto-regressive structure of R. To better understand the

link between ¢ and Q, we can rewrite the latter as:
) i b
(33) Qh:[yp%yzpr Jp]g]xzs Y h>0.

Consider the special case where G; is an impulse (i.e. pg = 0) so that the second term in
the expression above drops:

(34) Qp, =Vl x 8.

In this case, ¢ identifies a rescaled version of ), where the scale depends on §, the

parameter that governs the contemporaneous response of Ry to Gy:
(35) Q= i/p’rl x & VS. E[cy] = i/p’rl.

Intuitively, this scaling captures that in this example a change of one unit in €,+ changes
R; by one unit, whereas this change is size 6 for a change of one unit in eg. Therefore, the
only piece of information missing to compute Q) in this scenario is 5. Or, more generally,
the ratio between the impact response of R to each aggregate shock, as in the static setting
example.

Next, the time-series step provides a general strategy to take into account the difference
between R and R}, which serves as a bridge between the HEGE term and ¢j,.
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Time-series Step. This step provides the additional inputs required to move from ¢, to
flh. From the previous step, we know how to evaluate the cross-sectional propagation of
changes in R caused by e+ using ¢;. Following the methodology of Sims and Zha (1995),
one can find a combination of innovations in R, denoted by €, = {€,; +h}f:0, which taken
together result in the same path of R as after a shock to G - Rjg. Then we can use the
reduced-form estimates from the cross-sectional step to evaluate the response of Y; to the
sequence of innovations €.

These innovations exactly replicate R,- the time path of R in response to eg- in the ex
post sense. This is because at each point in time h > 0 we hit the economy with additional
surprises to R, unexpected from the perspective of h = 0. The Markov assumption implies
that there are no anticipation effects, and therefore, enforcing R ex post results in the
same outcome response as enforcing it ex ante. Subsection 3.3 relaxes the assumption of
no anticipation effects following the work by McKay and Wolf (2022) and Barnichon and
Mesters (2023).

Applying the approach of Sims and Zha (1995) requires estimates of the dynamic
response of R to the two aggregate shocks, egt and €,+. These can be estimated using
traditional time series methods, for example, local projections (Jorda 2005):

(36) Ry p = Vyegt + apert + Controls + e,y .
The estimated coefficients on eg; and e+ converge to the following.
(37) E[f/h] = COV[Rt+hJ egt]: E[&h] = COV[RZ‘+h) ert]-

In the AR(1) example, this is equivalent to:

h ..
N h— N
(38) E[vy] =51 +5 o, 0}, E[ay] = pi.
=t

In this example, unless pg = 0, the path of R will differ between shocks even after rescaling
by 6.

We can use IA{‘G = {f/h}Ih{:O and f{|R = {&h}Ii;I:O to find the sequence of innovations €;.
Before presenting the general formula, I illustrate how the procedure works using the
AR(1) example. Finding the innovation for period h = 0 requires:

n o~ ~ - Yo
(39) ag€rt+0 = Vo = €rts0 = Fa 5.

In other words, we look for the shock size to R that matches the impact effect of a unit
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change in egt. From the perspective of h = 1, this innovation implies that R changes by:

N ~ N Yo
ay X €rt40 = A1 X =
(40) ap

=dpr # v =0pr+dpg.

Although the innovation for period h = 0 matches the impact response vy, it does
not match the response at h = 1 that is given by v;. Therefore, we feed in an additional
innovation that hits the economy in period h = 1 to account for the remaining difference

between the two paths:
(41) V1 = a1 X Epprg + Ao X Erpel,

where to evaluate the effect of this second innovation we use the contemporaneous
coefficient agy. This implies that €,4,1 satisfies:
. A 1
€rtr1 = [V1 - a1 x €ppr0] —
(42) a0
= Spg.

The general formula to compute the sequence of ex-post innovations that replicate

R, up to some maximum horizon H, is given by:

h
(43) Vp= apény; Yh e H
j=0
This formula applies to any economy that fits into the system given by (S3), including

those where there is a two-way feedback between G and R.

Final Step. Once we obtain &, we can compute (), as follows:

h
(44) Qh = Z éh_kémk Vh e H.
k=0

That is, we estimate Qj, using the reduced-form estimates from the cross-sectional step
to evaluate the propagation of the sequence of innovations €. Crucially, we are evaluating
the cross-sectional estimates ¢;, using shocks that generate the same variation in R that we
used to identify those cross-sectional coefficients in the first place. Under the assumptions

of this Subsection, this yields a consistent estimate of the HEGE term at each horizon h.
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Lastly, the portable elasticity estimate is computed as follows.
(45) Br = by - Qp,.

where by, is the estimated coefficient on Sig€gr from the cross-sectional step.
Control Function Approach in Dynamic Settings. Inclusion of the interaction s;;R; as a
control, in general, does not deliver a consistent estimate of [51; . The reason is that the
additional interaction term can at best control for time paths of R that can be spanned
by variation that is, by construction, orthogonal to eg:. Because these two sources of
variation may result in different time paths for R, the control function approach is not a
valid robustness check for HEGE in general macroeconomic environments.
Concretely, the control function approach specification is given by:

CF CF CF  CF _ CF
(46) Yieon = by xsigGe+ ¢ x sigRe + Aj + Ay + e,
where s;,G; is instrumented with s;. €1, as in the baseline TWFE strategy, and the super-
script CF is used to denote the estimates from the control function approach. In the AR(1)
example, it can be shown that:

(47) E[B§™] - B o< 7 x (Rpg - 5Rpyr);

where 5 x Ry g is proportional to the path of R in response to residual variation in R:.Y
Specifically, 8, captures the contemporaneous response of R to the G shock.

Expression (47) highlights that, unless Ry = 3Ry, the control function approach does
not provide a consistent estimate of Blg . For example, if the path of R resembles an AR(2)
process, conditional on egt, but an AR(1) process, conditional on u;¢, then Ry g # ORpg. In
Appendix A.3.1, I derive the expected value of BgF for alternative DGPs to further illustrate
the mechanics of the control function approach. Moreover, while the control function
approach is inconsistent in general, its performance relative to its (biased) population
value can vary substantially with model specification. In particular, when the set of
additional controls - such as lagged dependent variables or lagged shocks - is misspecified,

Y Pplugging in the expressions for Ry and Ry, yields:

USRSy
Rh|G_5Rh\R:6pr+5Zpr pg_6 Pr :5Zpr Pg-
i— —~— 1=
j=1 Rz =1

In this AR(1) example, the control function approach partially addresses the problem by taking care of the
correlation between egr and R, resulting from the pure auto-regressive structure of R. However, it cannot
account for the dynamic effects of ez on Ry, that go through {G; +k}Z:1' Note that, for example, if R responded
to G with a lag then the control function approach would, in expectation, yield no improvements over the
TWEFE strategy for h > 0.
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the resulting estimates can deviate considerably from that population value.

----- Total Effect

@
1.1 \ —o— TWFE
1.0 ®. —@— Control Function
\ —@— Decomposition Framework
®. .\--- Portable Elasticity

\

/

4 .\.
5
Horizon

FIGURE 2. Dynamic Setting Without Anticipation Effects - Monte Carlo Results

Solid lines show the estimated cross-sectional responses to a G shock for three specifications - TWFE,
Decomposition Framework and Control Function - together with the population portable and total ([51,; +Qyp)
elasticities. Shaded areas show 90% confidence bands. Based on 1000 repetitions with N = 300 and T = 1000.
The DGP is generated using the same parameters as for the static case plus pg = .8, pr = .8, py = .0.

Monte Carlo Simulations. The performance of the decomposition is illustrated through
a series of Monte Carlo simulations. I simulate data for different economies that satisfy
the Markov assumptions of system (S3) and estimate three different impulse response
functions: i) TWFE, ii) Control Function, iii) Decomposition Framework. These correspond
respectively to specifications (24) and (46), and to the portable elasticity obtained from
the decomposition strategy discussed above.

I present two sets of results. First, in Figure 2 I show results for the AR(1) example.
Full details on the parameters used for the simulation can be found in the Appendix A.3.2.
The figure shows the estimated cross-sectional responses to eg¢. The dashed black line
corresponds to the population portable elasticity, while the dotted black line corresponds
to the population total effect (i.e., [51; + Qp). The decomposition framework provides a
consistent estimate of the portable elasticity at all horizons. In contrast, neither the TWFE
strategy nor the control function approach identify the portable elasticity.

Second, I study the performance of the decomposition and control function approaches
in a variety of data-generating processes that fit into (S3). The sample size is set to N = 300
and T = 1000, and the number of repetitions to J = 100. Appendix A.3.2 details the set of
data-generating processes and their parameter values. For each estimation strategy k,
DGP z and horizon h, I compute the absolute difference between the population portable
elasticity, th, and the average estimate across all repetitions and then normalize it by
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Blzjh to make it comparable across DGPs.

1] ik _ QP
TR B B |

P
Bzh

k
(48) 0.1

Consistency requires Gih — 0. Table A3 shows the mean and standard deviation of Gih
by horizon and estimation method. The decomposition approach consistently recovers
the true portable effects as opposed to the control function approach and TWFE baseline
strategy.

TABLE 1. Absolute Mean Relative Bias by Estimation Method and Horizon

Estimation Strategy h=0 h=1 h=2 h=3 h=4 h=5

Decomposition 0.002  0.002 0.007 0013 0021  0.031
(0.003) (0.002) (0.007) (0.014) (0.023) (0.035)
Control Function 0445 0259 0245 0282 0379  0.516
(0494) (0.223) (0.182) (0.300) (0.417) (0.519)
TWFE 0.146 0226 0333 0463 0603 0743
(0.130) (0.192) (0.295) (0.385) (0.480) (0.580)

Standard errors shown in parentheses. Values are reported as fractions of the population portable elasticity
(1=100 %). The sample size is set to N = 300 and T = 1000 and the number of repetitions to J = 1000. See
Appendix A.3.2 for further details on each parametrization.

Extensions. Appendix A.3.3 presents the derivations and results for settings with two-way
general equilibrium feedback (2W-GE) between aggregate variables. This analysis yields
an important insight. I show that, in general, when there is 2W-GE, the cross-sectional
elasticities estimated using either two-stages least squares (2sls) or reduced-form analysis
will be contaminated by GE effects, even in the absence of HEGE. In other words, in such
settings, the HEGE conditions discussed at the beginning of the paper are sufficient to
break identification but not necessary. The TWFE strategy will, in general, not identify a
clean partial equilibrium elasticity in these settings. This happens because units that are
more exposed to G will be more exposed to both the autonomous change in G triggered by
€gt and to the posterior change in response to R. This is an overlooked source of omitted
variable bias that this paper brings to light and which the decomposition framework also
addresses.

Appendix A.3.4 shows that the decomposition framework can accommodate settings
where both R; and eg: are correlated with a third aggregate variable A; (for example, TFP,
exchange rate), but A; affects all units in the same way. This echos empirical applications
for which the available source of variation g is not as good as random at the aggregate
level, but it does satisfy exogeneity with respect to A; in the cross section. Note that this is
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equivalent to saying that there is no HEGE with respect to A;.

3.3. Forward-Looking Dynamic Setting

This section generalizes the decomposition framework to settings with forward-looking
dynamics. This is akin to the dynamics implied by DSGE models, which I use as alaboratory
to test the performance of the framework. The difference with respect to the preceding
section is that now there can be anticipation effects: agents respond both to current and
expected realizations of macroeconomic variables. The key implication is that estimating
the differential response to the conditional path the GE variable, R, requires feeding the
system a counterfactual sequence of R shocks that reproduces R both ex post and in
expectation.

As shown by McKay and Wolf (2022) and Barnichon and Mesters (2023), constructing
counterfactuals that are robust to forward-looking dynamics requires access to shocks
that shift both the contemporaneous and expected future realization of macroeconomic
variables. First, I show how to implement the decomposition when a researcher has
access to these types of shocks and then I discuss implementation in cases where access
to shocks is limited. In settings with limited access to news shocks, the decomposition
framework provides an approximation to the population portable elasticity. The conditions
that determine the precision loss resulting from limited information depend on the data-
generating process and the shocks under analysis. As an illustration, in Section 5.3, I
study the determinants of the decomposition accuracy in the context of a two-region New
Keynesian model used to estimate cross-sectional fiscal multipliers.

Consider an economy in which the unit-level outcome can be characterized as follows.

F
Yy = Z stlgEt G”f Z fsert Rt+f]
(49) B S:
Z BssigGr-s + ZYksert kZﬂ)l o1 U U

I=1

where E¢[ X, ¢] is the expectation at time ¢ for the realization of X in period ¢ + f. The
parameter 3¢, for f > 0, captures the present response to the expected realization of G
in period ¢ + f. Similarly for y¢. I assume that only the first F expected realizations of
aggregate variables matter for the present responses and use the superscript { to denote
the responses to lagged realizations of the aggregate variables.?? In addition, I assume
that exposure shifters are variable-specific but not horizon specific (i.e., s;, determines
the cross-sectional response to both contemporaneous, expected, and lagged realizations

2 Alternatively, the DGP in (49) can be interpreted as an approximation of a true DGP with F* = oo and
Yy ~O0for f>F.
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of G).?1. The aggregate processes are as in the Markov economy with the addition that they
are subject to both contemporaneous and news (or anticipated) structural innovations:

p G,_: u
(50) = M| Bl
_]' urt

where u, is the vector of contemporaneous and news shocks to k in period ¢.?? The rest
of the economy is the same as in the Markov setting of Subsection 3.2.

The object of interest is the dynamic effect of a shock to G; on the cross-sectional
outcome, holding the realized and expected path of R fixed. Consider the following panel
local projection with two-way fixed effects:

(51) Yiten = bp X $igGt + Aipy + Ay + €y

where s;g€gt is used as an instrument for s;,G; to address potential endogeneity concerns.
To simplify notation, I assume that 3 j=BV f, € and shut down the parameters on lagged
realizations of aggregate and local variables in the process for Y;;. Then, b;, converges to
the following expression:

) F
(52) E[by] = B + . v rb coV[Ee[Ryyps £, ege],
f=0

Qy

where the first term is the portable component that captures the effect of a shock
to Gt on Y};,p, including the effects through changes in future G, holding E¢[R;. ;] for
h > 0 constant. The second term is the HEGE component which is a function of (1) the
contemporaneous and expected changes in R; conditional on a shock to G; and (2) the
cross-sectional sensitivities to contemporaneous and expected future realizations of R,
conditional on s;,. Next, I outline how the cross-sectional and time-series steps can be
generalized to accommodate forward-looking dynamics.

2IThe estimation framework does not require knowledge of the true exposure shifters to R so assuming
a constant s;, is without loss of generality. Horizon-specific shifters to R, s;, ; for j € {F, K}, imply that ¢
becomes horizon-specific which will be reflected in the estimated cross-sectional responses to different news
shocks (See cross-sectional step below). The assumption that s;, is a good proxy for exposure to present and
expected realizations of G is in line with most empirical work. If the exposure shifters to the contemporaneous
realization of G, s;g, and to the expected realizations of G, s;, , differ, then s;, x €5 will be a strong instrument
for s;, x G; but possibly weaker for s;; x E¢[Gy, r]. This is independent of HEGE and, therefore, relaxing the
assumption of constant s;, exceeds the scope of this paper.

22For example, the first entry of uy, corresponds to a contemporaneous shock, while the second one
corresponds to news about the realization of k in period t + 1.
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Cross-sectional Step . This section outlines the estimation strategy used to identify the
dynamic reduced-form responses of Y; to Gy and to both current and expected changes in
R. The latter set of parameters measures the response of Y};_ 5, to the expectation formed
at time t about the realization of Ry, ¢. For example, for = f = 0, this parameter measures
the contemporaneous response of Y;; to a contemporaneous innovation in R. Identifying
these parameters requires exogenous variation in the period-t expectation about the
realization of Ry, 7. In other words, we need to observe news (or anticipated) shocks about
the realization of R;  that agents learn about in period t. Let e‘r)) tf denote such a news
shock, where the superscript 0 is used to highlight that the information is received in
period ¢ (i.e., h = 0). For example, an unexpected monetary policy announcement this
quarter about a possible one-period interest rate hike next quarter, could be used to
identify the coefficients for f =1, at different horizons.

Suppose that we have access to news shocks up to horizon F, then we can estimate the
following reduced-form local projections:

F
Yit+h = bh X sigegt + Z th X Sig€2)t+f + }\ih + )\th + €tin-
f=0

Here ¢y j, is the reduced form response of Y;;; to the news received at t about the realiza-
tion of Ry, ¢, conditional on s;,. As before, by, is the reduced-form response of Y, to a
change in Gy, conditional on s;g.

Time-Series Step. The time-series step estimates the impulse response of R to (i) the shock
of interest, and (ii) the same set of contemporaneous and news shocks to R used in the
cross-sectional step.

F
0
(53) Rt+h :vhegt+ Z afherJHereth,
£=0
where e(r) b f is the news shock to R defined above. The coefficients as, measure the

response of Ry to the information received in period t about the realization of Ry, ¢.
Under rational expectations, v, and a g, are unbiased estimates of cov[E¢[R;, 4], €gt] and
cov[Et[Ry 1], e?) ", f]’ respectively.

Next, I use the impulse responses to the F news shock to find the combination of date
zero shocks that better enforces R|G = {f/h}gzo. Let A be an H x F matrix where each column
f is given by R| Rf = {ay, f}Ih{:O’ the estimated impulse response of Rto a t + f news shock.
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The sequence of F news shocks & is chosen to minimize the following quadratic formula:

& - arg min ”RG —AeHZ
ecRF |
(54) H F 2
= argenenlglg) Vh_fz::oahfef )

-0 _ (=0 \F . . .. .
where " = {¢,, f} F-or The difference with respect to the Markov setting is that this se-

quence of shocks enforces R|G ex ante because it only uses information received in period
h =0.If H > F, the sequence of news shocks does not, in general, exactly replicate IA{‘G,
but rather provides an approximation to it.

Final Step. Lastly, I compute Qh by using the estimates from the cross-sectional step to
evaluate the propagation of &°, the estimated sequence of shocks:

F
A0 - ~0
(55) Qh = Z th X €r)t+f,

where the superscript 0 is used to denote the estimated HEGE term of the ex-ante decom-
position. The estimate for [3{: follows from the following:

AP,O ~ ~
(56) B, = by — Q).

Implementation with limited access to news shocks. In the cases where we observe F < Fnews
shocks, the decomposition yields an approximation to the population portable elasticities.
In general, the loss of precision increases in the strength of forward-looking dynamics
beyond F (that is, how large are the parametersy pfor f> F) and in the difference between
the observed path of R after the shock of interest and the path enforced by the estimated
sequence of shocks &°. In Section 5.3, T use a two-region New Keynesian model to explore
which observable moments can be used to study the performance of the framework in
settings with limited access to news shocks.

DSGE Monte Carlo Simulations. To assess the performance of the decomposition frame-
work, I conduct DSGE Monte Carlo (Ramey 2016) simulations using data generated from a
two-region New Keynesian model with government spending shocks. The model extends
Nakamura and Steinsson (2014) by allowing heterogeneity across regions in both their
exposure to government spending, G, and their sensitivity to the interest rate, R;. Without
loss of generality, I assume that cov[sig, s;r] < 0, so that the region more exposed to G¢
is less sensitive to R;. Government spending follows an AR(1) process with innovation
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€gt, while the nominal interest rate, i;, is determined by a Tayor rule and subject to its
own shock €;;. As a result, the real interest rate R; responds positively and persistently to
fiscal shocks (that is, cov[R;,, €gt] > 0). This calibration implies a positive HEGE term.
Appendix D details the full model, and Table A9 summarizes the calibration.

The simulated data are used to estimate cross-sectional fiscal multipliers using the
estimation strategies discussed above. Given the forward-looking nature of standard New-
Keynesian dynamics, I assume access to a finite number of news shocks (i.e., F < F = oo)
when applying the ex-ante decomposition.

I compare two parametrizations that differ in how R; responds to a monetary shock
€j;, while holding fixed the response of Ry to egt. In both scenarios, fiscal shocks induce
a persistent increase in R;. In the first scenario - labeled misaligned - monetary shocks
induce only a transitory response in Ry, while in the second - labeled aligned - the response
is calibrated to more closely mirror the one following fiscal shocks.?® In other words,
these scenarios play with the difference between R‘G and R‘ Rr,0» the estimated response of
R to a contemporaneous innovation to the monetary rule.

Figure 3 presents the simulation results. The left panel corresponds to the misaligned
scenario, and the right panel corresponds to the aligned scenario. In each case, I show
the estimated multipliers for four estimation strategies: (i) the TWFE approach, (ii) the
control function approach, (iii) the ex-ante decomposition using only a contemporaneous
innovation to R, (iv) the ex-ante decomposition using four news shocks?* to R.

The misaligned scenario combines the strong forward-looking dynamics of the model
(Del Negro, Giannoni, and Patterson 2023; McKay, Nakamura, and Steinsson 2016) with
significantly different paths for R after each aggregate shock. In this setting, the decompo-
sition framework improves on the TWFE estimator, but suffers from some loss of precision.
This is because the estimation is constrained by the limited number of news shocks (i.e.
F = {1,4}). Nevertheless, the decomposition estimates, using one or four shocks, both
outperform the control function approach, which in this calibration yields estimates that
closely resemble those of the TWFE benchmark.

In the aligned scenario, the model still features forward-looking dynamics, but the
interest rate responses to fiscal and monetary shocks are more closely aligned. Here, the
decomposition performs substantially better. In particular, the ex-ante decomposition
with one or four news shocks recovers a portable elasticity that is very close to the popula-
tion value at all horizons. While the control function estimator also improves under this
calibration, it continues to under-perform relative to the decomposition approach.

ZIn Appendix A.5, Figure A2 plots the impulse responses of R for each scenario.
24That is, on top of the contemporaneous innovation, I assume that the researcher observes news shocks
about the realization of R in period t + s for s = {1, 2, 3}.
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(A) - Misaligned R Paths (B) - Aligned R Paths
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FIGURE 3. DSGE Monte Carlo Simulations - Results

The left (right) panel corresponds to a calibration where the path of R is misaligned (aligned) across aggregate
shocks (See Figure A2). The solid black line corresponds to 3* the population portable elasticities. The dashed
lines correspond to different estimation methods. 7"*£: TWFE approach; 3F': control function approach;
ngame’ «: ex-ante decomposition using k news shocks.

Extensions. Appendix A.5 presents several extensions of the simulation analysis. First, I
show that the decomposition framework consistently recovers the portable elasticity as
the number of available news shocks increases, under both parameterizations. Second,
I examine environments with weaker forward-looking dynamics to confirm that the
precision loss from limited information is smaller in those settings. Finally, in Subsection
5.3, I explore, within the limited-information setting, which observable data moments are
informative about the accuracy of the framework and whether the method tends to over-
or under-estimate the population portable elasticity, using the structure of the two-region
New Keynesian model.

3.4. Inference

The estimated portable elasticities at horizon h are a function of the panel and time series
coefficients of different horizons. To do inference, I jointly estimate the cross-sectional
and time-series coefficients using a just identified GMM system. This approach allows
me to explicitly model the covariance structure between panel and time-series moment
conditions, induced by shared macroeconomic shocks, by clustering these moments at
the time level. For the covariance between panel moment conditions that correspond
to different parameters, the method can flexibly accommodate alternative clustering
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levels (i.e. time, unit, or two-way). Similarly for the time-series moments, for which I
choose a HAC-consistent formula as the baseline. Standard errors for the HEGE terms
and the portable elasticities are derived using the Delta method applied to the cluster-
robust covariance matrix of moment conditions. Monte Carlo simulations confirm that
this method provides (i) the same standard errors as the control function approach in
static settings, and (ii) standard errors with the right coverage in dynamic contexts. A
detailed exposition of the inference framework is provided in Appendix A.6.

Recap. This section outlined an estimation strategy to decompose cross-sectionally iden-
tified elasticities into a portable component and an HEGE component. The framework
combines cross-sectional and time-series analysis. In the cross-sectional step, it estimates
the differential responses to innovations in the variable of interest, G, and to innovations
in the variable(s) that the researcher wants to difference out, R, conditional on exposure
to the main variable of interest - s;,. In the time-series step, it estimates the impulse
response function of R to both the shock of interest, e, and to innovations to R itself, €.
Finally, the output of these steps is combined to estimate the HEGE component. I discuss
how to apply each of these steps under different assumptions about the data-generating
process and about the information available to the researcher. Using DSGE Monte Carlo
simulations, I show that the decomposition framework identifies the portable elastic-
ity. In cases where the researcher has access to limited information, the decomposition
framework works as an approximation to the true portable elasticity, and it represents an
improvement on both baseline estimates that ignore HEGE and the correction implied by
the control function approach.

4. Empirical Application - US Cross-sectional Fiscal Multiplier

To illustrate the use of the decomposition framework, I revisit the estimation of the US
cross-sectional fiscal multiplier through the lens of an HEGE economy. In particular, I
evaluate the possibility that States in the US differ not only in how exposed they are to
fiscal shocks but also to changes in interest rates. I focus on the link between govern-
ment spending and interest rates for two reasons. First, the strength of the monetary
policy response to government spending shocks - the degree of monetary offset - is an
important determinant of the aggregate fiscal multiplier. The response of monetary policy
is undoubtedly among the set of aggregate variables that we aim to difference out by
using cross-sectional methods (Nakamura and Steinsson 2014). Importantly, there is con-
sensus on the profession that available estimates of the cross-sectional fiscal multiplier
are independent of monetary policy, and the method proposed in this paper is designed
to test whether this is indeed the case. Second, it is well documented that interest rate

sensitivities vary substantially between economic units (e.g. Herrefio and Pedemonte
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(2025); Almgren et al. (2022); Carlino and DeFina (1998)), making it a natural starting point
to explore the sensitivity of cross-sectional fiscal multipliers to HEGE.

For estimation, I use the dataset built by Dupor and Guerrero (2017). The authors
construct a panel dataset of US State-level defense contracts between 1951 and 2014.%°
Gross State Product data are sourced from BEA and available from 1963 onward. Both
output and defense contracts are deflated using the national Consumer Price Index and
scaled by State population. I complement this dataset with data on the Federal Funds
rate, total nominal federal tax receipts, nominal GDP, and the series of Romer and Romer
(2004) monetary policy shocks as extended by Wieland and Yang (2020). The frequency of
analysis is yearly and covers the period 1969-2007.2°

I construct output and defense spending variables to estimate cumulative fiscal mul-
tipliers following the recommendations of Ramey and Zubairy (2018). Concretely, the
cumulative percentage change in variable X;; relative to a baseline level of output Y;;_; is
computed as:

o XXl - (h+ D)X
Xiten = x 100,
Yiia

where the subscript i indexes US states and t indexes years. The aggregate variables are
constructed analogously. I measure the State-level exposure to defense spending, s;g,
following Nakamura and Steinsson (2014):

PC jype

i = Gy /Y

igt = ~pc o pC’
G, /Yt

where Gﬁc is per-capital real defense spending in State i during year t and Ylfzc is per-
capita real output in State i during year ¢. Gf “and Yf “ are the corresponding national
counterparts. The idea is that a State is relatively more exposed to defense spending if its
share of local defense spending to GDP is higher than the corresponding national share. I
follow Nakamura and Steinsson (2014) and define Sig as the average of this ratio in the five
years of their sample (i.e., 1966-1971).

First, I estimate the cross-sectional fiscal multiplier using the TWFE regression.

C ™ C
(57) V=B % sigGit+h +Ajp, + Ay, + Controls + e;;, g,

C . . . . . . C .
where Y7 , is the cumulative change in real output per capita in State 7, G, ; is the cumu-
lative change in per capita defense contracts in State i, and A, Ay, are horizon-specific

ZData between 1951-2009 is sourced from two reports: the Prime Contract Awards by State report and the
Atlas/Data Abstract for the US and Selected Areas. Both were compiled by the Directorate for Information
Operations and Reports. Data for 2010-2014 are sourced from USASpending.gov.

26The sample is limited by the time-span of the Romer-Romer monetary policy shocks.
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fixed effects for each State and year. I follow the literature and instrument SigGiCt ., With
sithC; that is, I use the one-year change in aggregate defense contracts as an instrument
for the h-period ahead cumulative change in regional contracts. I control for the lag of
real per-capita output growth. Following standard practice in this literature, I cluster
standard errors at the State level. The parameter of interest is B}TLW, which measures the
response of local output to an increase in local government spending equivalent to 1% of
local output - the cross-sectional fiscal multiplier. The superscript TW is used to denote
that this estimate corresponds to the TWFE specification. The left panel of Figure 8 plots
the estimation results. The TWFE multiplier is 1.5 at the two-year horizon and above one
at all shorter and longer horizons.

Next, I present evidence of HEGE with respect to monetary policy responses and
implement the decomposition framework as outlined in Section 3.2 using a sequence of
counterfactual contemporaneous shocks and as outlined in Section 3.3 using only date

zero shocks. In the following, I provide further details on each step.

4.1. HEGE Test

I test for HEGE in monetary policy responses by running the following local projections:

(58) Yi%h = by, x SigGiCt+h +Cp X Sjglt + Ajp + Agyy + Controls + ez, p for h=1,4,

where it is the Federal Funds Rate. For estimation, I instrument s;,i; with s;,RR;, where
RR; denotes the Romer-Romer monetary shocks. Figure 4 presents the estimated impulse
response, which is positive and significant on all horizons. This finding rejects the null of
homogeneous exposure to interest rate changes and implies that time fixed effects alone
may not fully absorb monetary policy changes in this setting. In particular, the results
indicate that States that are more exposed to defense spending, as measured by Sig, are
less responsive to interest rate changes.?’

Robustness. Appendix C.1 presents detailed results for each of the following robustness
checks. First, in Figure A7, I show that the estimated response is robust to excluding the
interaction between government spending and state-level exposure. Second, I re-estimate
equation (58) using the monetary shock series from Aruoba and Drechsel (2024) for the
period 1980-2007. Figure A8 shows a positive estimated response, although less precisely
estimated, possibly due to the shorter sample. Third, I address the concern that the Romer-
Romer monetary shock series could be picking up business cycle variation that is not

%’One possible explanation for this finding is related to the relative cyclicality of government and private
consumption. If government purchases are relatively less cyclical than private purchases, then States that
are more dependent on the former type of purchases are likely to be more sensitive to fluctuations in the
interest rate.
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necessarily related to monetary policy. In Figure A9, I show that the results are robust to
the inclusion of additional interaction terms between s;, and each of the business cycle
shocks identified by Angeletos, Collard, and Dellas (2020). Fourth, I estimate State-specific
output elasticities to the Romer and Romer (2004) shock using local projections. Figure
A10, shows that the estimated State-level elasticities are positively correlated with State-
level exposure to G and that the correlation is statistically significant.

Years

FIGURE 4. HEGE Test - Differential Response to i;

Shaded area represents 68% (darker) and 90% (lighter) confidence bands. Plot corresponds to the cumulative
percentage response of local output to a percentage point increase in the Federal Funds rate, evaluated at
Sig =1.

The previous test indicates that in this empirical setting the first condition for HEGE
to represent an identification challenge is met: s;, affects cross-sectional sensitivities
to defense and monetary policy shocks. In the next subsection, I show that the second
condition is also met - namely, that the interest rate moves in response to a defense
spending shock - which motivates the use of the decomposition framework.

4.2, Time-Series Step

The following step estimates the time series response of the interest rate to defense spend-
ing shocks and monetary policy shocks. First, this will inform whether the interest rate is
effectively a GE variable in this empirical setting. I find this to be the case, so I use these
reduced-form impulse responses to construct two different sequences of counterfactual
monetary surprises. The first one, following Subsection 3.2, finds the sequence of ex-post
contemporaneous surprises to the interest rate that replicate its observed path after a
defense spending shock. I refer to this as the ex-post decomposition (Sims and Zha 1995).
Second, following Subsection 3.3, I find the magnitude of a period zero monetary surprise
that better matches the estimated path of the interest rate after a defense spending shock
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in the least squares sense. I refer to this as the ex-ante decomposition (McKay and Wolf
2022; Barnichon and Mesters 2023).
First, I run the following local projections:

(59) Lyp = vatC + apRR; + Controls + ¢;_ p,

where i; is the Federal Funds rate, GtC is the one-year change in national defense contracts
relative to GDP and RR; are the series of Romer and Romer (2004) monetary policy shocks.
The set of controls includes lagged realizations of the dependent variable, the Romer-
Romer shock, per-capita real output (in logs), the average federal tax rate, CPI inflation,
and per-capita real defense spending (in logs). Standard errors are HAC robust.
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FIGURE 5. Interest Rate Responses

Shaded area represents 68% (darker) and 90% (lighter) confidence bands. The green line shows the response
of the nominal interest rate to a defense spending shock equal to 1% of lagged national output. The red line
shows the response to a Romer-Romer monetary policy shock of one standard deviation.

Figure 5 shows the impulse response functions of the interest rate to each aggregate
shock. In response to a defense spending shock equivalent to 1% of lagged national
output, the interest rate increases by around 1.5 percentage points on impact.?® A one-
standard-deviation Romer-Romer shock raises the interest rate by 1 percentage point on
impact, with a peak response of approximately 1.9 percentage points in the second year.
Importantly, the shape of these two impulse responses is relatively similar, which, as I
discuss in Subsection 5.3, indicates that the loss of precision in applying the decomposition
without access to news shocks should be relatively small.

In order to implement the ex-post decomposition, I employ the estimated dynamic
response to the Romer-Romer monetary shock to compute up to H = 4 counterfactual
monetary surprises that replicate the interest rate response to the defense spending shock.

Figure 6A displays the resulting sequence of shocks, denoted e.

2The response to a one standard deviation increase in GtC is of approximately 0.42 percentage points.

37



For the ex-ante decomposition, I only use a single counterfactual shock that hits the
economy at h = 0 and propagates according to ;. This involves solving the minimization
problem defined in equation (54) to find the size of the Romer-Romer shock that best
replicates the path of the interest rate following the defense shock. Setting F = 0, the
minimization problem becomes:

0 d 2
(60) e’ =argmin ) (f’h —ap ef) ,
eeR h=0

where ay = a; are the estimated responses to a Romer-Romer shock. I find that a Romer-
Romer shock of &° = 1.98 standard deviations minimizes (60). Figure 6B plots the resulting
ex-ante counterfactual path for the interest rate, alongside its estimated response to the
defense shock. The counterfactual path remains within one standard deviation of the
target response at all horizons.

—8— Defense Shock
6 *- Counterfactual path

Percentage Points

Counterfactual Shocks (Std. Dev.)

: . . " 1 2 3 4
1 2 . 3 4 Horizon
Horizon

A. Ex-post Counterfactual R Shocks B. Ex-ante Counterfactual Path of R

FIGURE 6. Time Series Step - Counterfactual Computations
Panel (A) shows the sequence of estimated counterfactual monetary shocks for the ex-ante decomposition.
The units are standard deviations of Romer-Romer monetary shocks. Panel (B) shows the counterfactual

path for R implemented by the ex-post decomposition with & =1.98. Defense Shock is the estimated response
of the interest rate to the defense shock with its corresponding 68% and 90% confidence bands.

4.3. Cross-sectional step

I jointly estimate the cross-sectional responses to defense spending shocks and interest
rate shocks using the following reduced-form specification:

(61) Yi%h = by, x sing +Cp ¥ sigRRt +A;p + A, + Controls + e, 1,

where RR; is the series of Romer and Romer (2004) monetary shocks and Gg isthe one-year
change in aggregate defense contracts. I include the same set of controls as in the TWFE
specification. The coefficient ¢ captures the differential response of cumulative output
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to a one standard deviation in the monetary shock for the region with exposure equal to
the national average. I separately estimate the first-stage regression for local government
spending using:

(62) Gict+h =0y, x sing +Ajp, + Ay, + Controls + ;.. p,,

where 0}, captures the first-stage coefficient at horizon k. I add as controls all variables
included in the reduced form specification (61). I proceed in two steps to align the units
from the time-series and cross-sectional reduced-form estimates.

Figure 7 shows the percentage response of local output to a monetary shock of one
standard deviation, evaluated at s;, = 1. The estimated differential response is positive and
significant at all horizons, consistent with the findings in the HEGE test above. The corre-
sponding two-stage least squares responses to the defense shock, I;h /6 1, are nearly identi-

cal to the TWFE estimates and are therefore relegated to Figure All in Appendix C.2.%°
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FIGURE 7. Reduced-form Differential Response of Y; to it - ¢,

Shaded area represents 68% (darker) and 90% (lighter) confidence bands. The solid line shows the cumulative
percentage response of local output to a one standard deviation Romer-Romer shock, evaluated at s;; = 1.
The specification controls for lagged output growth.

4.4. Portable Multiplier Estimate

Finally, I combine the results of the previous two steps to construct estimates for the
portable cross-sectional multiplier up to H = 4. Formally, [31; is given by:

7 h = ~ - P
63 AP br = o Chok X ek AP by x @
(63) Bh,Expost - 0 ) Bh,Exante - 0 )

h h

P These estimates may differ from ng if there is in-sample correlation between the Romer-Romer shock
and any of the other regressors included in the specification.
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where e, ;. is the ex-post monetary surprise in period ¢ + k and &° is the period zero
monetary shock. Dividing by the first stage coefficient expresses results in terms of changes
to local government spending as is usual in this literature. Figure 8 shows the results for
each version of the decomposition and for the TWFE specification. The control function
approach, shown for completeness, delivers estimates that are virtually identical to those
of the TWFE strategy. The portable multiplier is below the TWFE multiplier at all horizons
for both versions. This is for two reasons. First, it reflects the fact that ¢, > 0 meaning
that US States that are more exposed to defense spending also react less to changes in
interest rates. Second, the interest rate is estimated to increase in response to a defense
spending shock. Together, both forces push the cross-sectional multipliers estimated
using the TWFE strategy above the estimated portable multipliers. For example, at the
two-year horizon, the TWFE multiplier is 1.5 while the estimated portable multiplier is 1.
Lastly, Figure 9 shows the estimated HEGE terms for each version of the decomposition

Standard TWFE Expost Decomposition Exante Decomposition

35 35 35

=»=Control Function
3.0 3.0 3.0
2.5 2.5 2.5
2.0

1.5 15 / 1.5
1.0 1.0 1.0

0.5 0.5 0.5

2.0 2.0

0.0 0.0 0.0
1 2 3 4 1 2 3 4 1 2 3 4

Horizon Horizon Horizon

FIGURE 8. Decomposition Results for the US Cross-Sectional Multiplier

Shaded area represents 68% (darker) and 90% (lighter) confidence bands. Standard errors are computed as
described in Appendix A.6 with unit-level clustering for panel moment conditions. Point estimates show the
cumulative percentage change in local output when local defense spending increases by 1% of local output.
Ex-post Decomposition shows results for the decomposition outlined in Subsection 3.2. Ex-ante Decomposition
shows results for the decomposition outlined in Subsection 3.3 using a single shock. The blue dotted line
shows the results from the control function approach..

expressed in the same units as the cross-sectional multiplier:

Qh,Exante

O-h, Expost
—_— éh

) Qh,Exam‘e =
O

(64) Qh,Expost = ’
where éh are the first stage coefficients from (62). The estimated HEGE terms are sta-
tistically different from zero at the 90% level at all horizons for both versions of the

decomposition.
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FIGURE 9. Statistical Significance of Estimated HEGE Terms

The plot shows the point estimate and confidence bands for flh) Expost O the left-hand side and for flh) Fxante
on the right hand side. Standard errors are computed as outlined in Subsection 3.4.

Robustness. Appendix C.2 presents results from a series of robustness checks. First, I
show that results are robust to using the real Federal Funds rate instead of the nominal
rate. Figure A12 shows that the point estimates for the portable multiplier remain largely
unchanged, although the ex-post decomposition becomes noisier. Second, Figure A13
shows that the results are robust to using the period average value of Sigt instead of the
average of 1966-1971. Third, I present results using two alternative sets of controls in the
cross-sectional regressions: (i) no controls, (ii) baseline plus lagged shock(s). Figure A14
shows results when no controls are included - in line with the baseline choices of, for
example, Nakamura and Steinsson (2014); Dupor and Guerrero (2017); Auerbach, Gorod-
nichenko, and Murphy (2020). This choice results in significantly larger estimates of the
cross-sectional fiscal multiplier relative to my baseline specification, which controls for
lagged output growth. The fact that controlling for lagged output dampens the cross-
sectional multiplier was first noted by Ramey (2020). Overall, both the TWFE and portable
multipliers shift up, yet the magnitude of the estimated HEGE term remains stable. Figure
A15 corresponds to the baseline specification augmented by adding lags of the correspond-
ing aggregate shocks, interacted with s;,. Adding lagged shocks further shifts downwards
both the TWFE and portable estimated multipliers, in particular both drop below 1 at
the two-year horizon. However, the estimated HEGE term is of the same magnitude as in
the baseline specification, albeit less precisely estimated. Fourth, I present the results
for seven alternative control choices detailed in Table A8. Figure A16A plots the baseline
estimate for the TWFE alongside each of the seven alternatives. Figures A16B and A16C
repeat this exercise for the ex-ante portable multiplier and the HEGE term, respectively.
Across specifications, the estimated HEGE terms fall within one-standard deviation of the
baseline estimates.
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Recap. This section revisits the estimation of cross-sectional fiscal multipliers using
State-level data for the US between 1969-2006. I show that taking into account the het-
erogeneous effects of monetary policy across US States matters for the estimation of
cross-sectional fiscal multipliers. In particular, I estimate a portable multiplier that is an
order of magnitude lower than baseline TWFE estimates. This finding underscores the
limitations of relying solely on time fixed effects to difference-out general-equilibrium
effects, in particular, those operating through systematic monetary responses.

5. Model

This section develops a theoretical counterpart to the empirical decomposition of Section
4 using a two-region New Keynesian environment. The model provides a structural in-
terpretation of the empirical objects by expressing the TWFE cross-sectional multiplier -
denoted by .Zs - the HEGE term Q, and the portable multiplier - denoted by //lgs -in
terms of model-implied responses to a fiscal policy shock. I use the model to decompose
M s into three channels: substitution between regional goods; intertemporal substitution
driven by regional inflation differentials; and the HEGE channel, which arises when re-
gions differ in their responsiveness to aggregate real interest rate movements. The HEGE
term enters as a residual general-equilibrium force that moves the model-analogue of the
TWFE multiplier away from its portable counterpart.

Next, I show that HEGE can cause cross-sectional multipliers to vary widely across
monetary regimes, sometimes in directions opposite to those of the aggregate multiplier.
This challenges the common interpretation of .#g, the TWFE cross-sectional multiplier,
as partial equilibrium objects, a view often justified by the inclusion of time fixed effects.
Crucially, when regions differ in their exposure to general-equilibrium forces, .#g reflects
not only direct policy effects, but also heterogeneous responses to GE adjustments. As a
result, the property highlighted in prior work (Chodorow-Reich 2019; Dupor et al. 2023)
that cross-sectional multipliers can serve as upper or lower bounds on the aggregate
multiplier, depending on the monetary environment, is no longer guaranteed when HEGE
is present and not taken into account. In contrast, the portable multiplier //lgs - for
which this paper provides an identification strategy - retains several key properties: GE
invariance, validity as a bound on the aggregate multiplier, and usefulness for model
comparison.

Finally, I treat the two-region New Keynesian model as a useful approximation to the
empirical environment and ask: which observable data moments best predict the precision
loss in estimating the HEGE term under limited information? The model reveals that a
sufficient statistic, the cumulative discrepancy between the realized and counterfactual
path of R, is highly informative about the estimation error in the HEGE term. I then
calibrate the model to match the empirical value of this moment. This allows me to

42



evaluate how the decomposition performs in a data-generating process that mirrors
the empirical setting in Section 4. The results suggest that, conditional on the model
environment, the method delivers accurate estimates of the portable multiplier even in
the presence of strong forward-looking dynamics.

Environment. I now present a general model structure, beginning with its sequence-
space representation and structural blocks. The derivations follow McKay and Wolf (2022);
Wolf (2023a), and the two-region3? model is based on Nakamura and Steinsson (2014).
The economy consists of two regions and is characterized by a set of n; x 2 endogenous
regional variables {K;} and a set of n,, endogenous aggregate variables {W;}. There are
two structural aggregate shocks s € {wy, wo } that represent changes in aggregate variables
Wit, Wor € We. The time path of a shock s is denoted by €5, and € = (ew,, €w,) denotes
the full path of the shock. Each entry j in es corresponds to an innovation in wg that
is announced at time t = 0 and implemented at time ¢ = j.3! Let dx = {xt}72, denote the
perfect-foresight path of a variable x, and let dx| be the corresponding path conditional
on the shock sequence €. The regional block of the model is characterized by

(65) HydK + Hy,dW =0,

where the vector dK collects the time paths of k; € K; and similarly for dW. The matrices Hy
and H,, condense the relationships that characterize the regional block.3? The aggregate
block is characterized by

(66) ApdK + AydW + Ace = 0.

The above formulation assumes that the structural shocks only affect the regional block
through their effect on the set of aggregate variables W;. This assumption is important be-
cause it ensures that these shocks serve as valid instruments for the observed realizations
of the policy or aggregate variables.

I denote by HY the partial equilibrium Jacobian of z with respect to x. This matrix
maps changes in the time-path of variable x to changes in variable 2z, holding all else equal.
Each column j of this matrix gives the path of z in response to a one-unit innovation to
x announced at t = 0 and implemented at t = j. The general equilibrium Jacobian of z
with respect to the structural shock ey, is denoted by J ;Wl. Each column j of this matrix
contains the general equilibrium response of an endogenous variable z to a change in w;

30The framework can be generalized to arbitrary N regions.

31For example, if ¢; is the vector of innovations to the nominal interest rate, then the first entry captures a
contemporaneous surprise, while the second represents news received at t = 0 about a change in the rate at
t=1.

321 omit regional shocks and unobserved variables for notational simplicity but the environment can be
generalized to accommodate those features.
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announced in period t = 0 and implemented in period t = ;.

5.1. Anatomy of the NK Cross-sectional Fiscal Multiplier

I use these objects to characterize the determinants of the cross-sectional fiscal multiplier
in a standard two-region New Keynesian model. I take as a baseline the model in Nakamura
and Steinsson (2014) and extend it to allow regional heterogeneity in household responses
to the real interest rate. While the full model features both Ricardian and hand-to-mouth
households, the derivations below assume a representative household in each region
for tractability. The main features of the model are summarized here, with full details
presented in the Appendix D.

The economy consists of two equal-sized regions, denoted H (Home) and F (Foreign).
In each region, a representative household has separable preferences over labor and
consumption and CES preferences over domestically and foreign-produced goods, each
of which is itself a CES aggregate of locally produced varieties. Financial markets are
complete, which implies perfect risk sharing across regions.

The federal government purchases domestic and foreign goods using the same CES
demand structure of households. Aggregate government spending is subject to an idiosyn-
cratic shock €4 that increases spending heterogeneously across space: each additional
dollar of spending increases purchases of the Home (Foreign) good by sy (sr) cents. The
government levies lump sum taxes to ensure the budget balances in each period.

On the supply side, local firms produce differentiated varieties using local labor as
the sole input. Firms compete monopolistically and set prices a la Calvo, giving rise to
two regional New Keynesian Phillips curves. Lastly, the nominal interest rate is set by a
monetary authority and is subject to an idiosyncratic shock e;.

Aggregate government spending, G, follows an exogenous process governed by:

-1
(67) dG = AS g,

where Ag allows for a general auto-regressive structure. This implies the following process

for regional government consumption g:

dg, = Hg dG
:SrdG N 7’=H,F.

(68)

The scalar s, captures the exposure of the region r to aggregate government purchases.
The nominal interest rate is set according to the following inertial Taylor rule:

(69) di=A[dY +A]ldTT+Al'e;,
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where Y and IT denote aggregate output and national inflation, respectively (i.e., the
weighted sum of the corresponding regional counterparts). Total consumption in region r
is determined by the Euler equation:

(70) dey=H.dr+Hldq V r=H,F.

Consumption depends on the path of the national real interest rate, r € W, and the real
exchange rate, g € K, which captures regional inflation differentials. The real exchange
rate reflects the gap between the national and local real rates induced by differences in
regional CPI inflation.

The path of local output can be expressed as a function of regional demand, regional
government purchases, and relative prices across regions.

(71) dYy = H!dcy + H dep + HY dg, + HY, dq vV r=H,F.

The first two terms on the right-hand side capture the effects of changes in regional
consumption demand. The third term captures the effect of regional government pur-
chases on local output. The last term measures the effect of changes in g, the real exchange
rate between regions.

Let eg denote a time path of structural shocks such that eg = [1,0,..0] and ¢; = 0.
In other words, there is a contemporaneous one-time increase in e that propagates
according to (67) and no further shocks hit the economy. We want to compute the cross-
sectional output multiplier, .#cs, in response to eg:

(72) Mcs =

Since dg, = srdG, we have:
(73) dgy — dgr = (su - sp)dG,
which yields

_ dyH|€g _dyF|€g

(74) AMcs = )
7 (su - sp) dGye,

where .#s measures the relative change in local output per unit of differential govern-
ment spending between regions after an aggregate fiscal shock.> Substituting in the

structural expressions for local output and consumption yields a decomposition into three

Bwithout loss of generality, the above formula can be modified to compute either cumulative multipliers
or multipliers relative to the change in government purchases on impact.
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components: two relative price effects and one interest rate sensitivity term.

(75) Mcs = dl+ (O + Ops)dq|e, + d[Hc, — He,ldre, |,

(s = s7) dGje,
where dl is a vector of ones with the same dimension as dG. In this model, the cross-
sectional fiscal multiplier can deviate from unity through three channels.3*

First, an expenditure switching channel, which captures how households reallocate
consumption between Home and Foreign goods in response to changes in relative prices.
Its strength is governed by Ogg, a function of the elasticity of substitution across Home and
Foreign goods and the degree of home bias in preferences. A positive fiscal shock raises
the relative price of goods produced in the more exposed region, leading households to
substitute toward the less exposed region. This substitution dampens the local output
response, reducing the multiplier.

The second is a relative intertemporal substitution channel that reflects the effect of dif-
ferences in local real rates on consumption. These differences arise due to heterogeneous
consumption baskets across regions - for example, from home-biased preferences - which
cause region-specific CPI inflation responses. This channel operates through movements
in the real exchange rate and its strength is governed by Os. Under home bias, the relative
intertemporal channel also has a negative effect on the size of the multiplier. The fiscal
shock generates expected relative disinflation in the more exposed region, raising its
relative real interest rate and lowering its relative consumption.? Like the ES channel,
this channel tends to reduce the multiplier.

The third channel, which I refer to as the HEGE channel, also operates through in-
tertemporal substitution but captures differences in sensitivity to the national real rate
between regions. This channel is non-zero only when regions differ in their interest rate
sensitivity. For example, with CRRA utility and separable preferences, this would be the
case with region-specific intertemporal elasticities of substitution (IES). Its strength is
governed by two components: (i) 9, a function of the degree of home bias in preferences;
and (ii) the heterogeneity in real rate sensitivity. Unlike the other two channels, HEGE
can amplify or dampen the cross-sectional multiplier, depending on the direction of the
real rate movement and the correlation between exposure to fiscal policy and interest
rate sensitivity.

34In the full model, the presence of hand-to-mouth households adds an additional Keynesian channel that,
generally, amplifies the cross-sectional multiplier.

350n impact, the spending shock increases relative producer price inflation for the exposed region. Regional
convergence requires that this initial difference in inflation rates across regions be compensated for by
expected relative disinflation in the future. That is, there is a decrease in expected future producer price
inflation in the exposed region relative to the less exposed region. With home bias, this translates into a
decrease in expected consumer price inflation for the exposed region because its consumption basket is
loads more heavily on its locally produced good.
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The portable multiplier is defined as the TWFE cross-sectional multiplier net of the
HEGE channel:

19|:H£H _HZF] dr‘eg
(su-sp) dGj,

(76) ME = Mg -

HEGE Channel

This mirrors the decomposition in equation (2) and identifies the model-based analogue to
the empirical HEGE term, (), and to the portable elasticity, [31;. The first term in the HEGE
channel captures the relative sensitivity to the real rate, normalized by fiscal exposure.
The second captures the general equilibrium response of the real rate to government
spending shocks.

To compute the model analogue of the empirical HEGE term Qy, I isolate the con-
tribution of the real interest rate channel to the differential in cross-regional output
dYH|e, — AVF|c,- | ask: What portion of the differential would arise if the only effect of the
fiscal shock were the general equilibrium path of the real rate, holding all other chan-
nels constant? To answer this, I construct a counterfactual sequence of monetary policy
shocks that reproduces the real rate path dr‘eg induced by the original fiscal shock. This
allows me to simulate the output effects of the HEGE channel in isolation and recover the
model-implied path of Q.

Under the assumption that structural shocks affect regional outcomes only through
their impact on aggregate variables, the HEGE term can be computed using the general
equilibrium response of local output to a time-path of monetary innovations €; that
replicates dr‘eg. Letting G, denote the general equilibrium Jacobian of the real rate with
respect to the monetary shock ¢;, I compute the following:

(77) & =[Gy'] ldrc,,

where ¢; is the vector of contemporaneous and news shocks that implements the desired
real rate path. Given this sequence, the region-specific output responses are:

(78) dy,e, = Gy.&; Vr=H,F.
The implied model counterpart to Qy, is given by:

_dYhje; — YR,

79) (sg - sF)

where Q = {Qh}l;io denotes the vector of model-implied HEGE terms across horizons.
Subtracting this vector from the TWFE multiplier .#g yields ///gs, the model-analogue of
the portable cross-sectional multiplier.
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5.2. Pitfalls of Failing to Control for HEGE

The previous discussion highlighted how the HEGE channel may dampen or amplify the
cross-sectional fiscal multiplier relative to a counterfactual economy where regions are
equally responsive to interest rate changes. In this section, I use the model to study the
implications of failing to control for HEGE on (i) the dispersion of cross-sectional fiscal
multipliers and on (ii) their relation to the aggregate fiscal multiplier - denoted by .#4.

The first point relates to the monetary policy invariance that has been attributed to
the available estimates of the cross-sectional multiplier. In HEGE economies, the New
Keynesian model can generate cross-sectional fiscal multipliers .#g, which are just as
dispersed as the aggregate multipliers.

The exercise is as follows. Consider three different monetary policy rules that have
different implications for the covariance between government spending shocks and real
interest rates. These are the same three rules studied by Nakamura and Steinsson (2014).
In the first case, the monetary authority follows an inertial Taylor rule with a weight
on inflation of ¢ = 1.5 and on the output gap of ¢, = .1. This monetary rule implies
an aggressive response to the inflationary pressures that follow a government spending
shock. For the second case, I assume that the monetary authority keeps the national
real rate fixed at its steady-state level in response to government spending shocks (i.e.
i — ﬂ?gg = rss). In the third case, the monetary authority keeps the nominal interest rate
fixed at its steady-state level in response to government spending shocks (i.e. i; = 7). This
last scenario is akin to an economy that hits the Zero Lower Bound (ZLB).

In addition, I consider two scenarios for the covariance between exposure to gov-
ernment spending shocks and to interest rate changes. In both cases, the shock is to eg
but the difference comes from how the aggregate shock loads in each region. I refer to
the case where the more interest rate sensitive region is more exposed to government
spending as high IES, and to the reverse case as low IES. Essentially, I solve the model
for each combination of monetary rule and spending shock structure to compute the
corresponding cross-sectional and aggregate fiscal multipliers. The calibration is the one
used for the DSGE Monte Carlo exercise in Subsection 3.3, detailed in Table A9.

Table 2 presents the model-analogues of the TWFE and portable cross-sectional multi-
pliers, as well as the aggregate multiplier for each scenario. The portable cross-sectional
multiplier is, by definition, invariant to monetary policy and to the structure of the govern-
ment spending shock. However, the TWFE cross-sectional multiplier depends on both the
monetary response and on which region is more exposed to the spending shock. These
multipliers range between .6 and 1.3, whereas the aggregate multiplier, which also depends
on the monetary rule, ranges between .64 and 1.14. This exercise illustrates that HEGE can
introduce substantial variability in cross-sectional multipliers depending on the direction
of GE responses and the correlation between cross-sectional exposures.
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TABLE 2. Fiscal Multipliers & Monetary Policy with HEGE

Government Spending Shock

Monetary Rules High IES Low IES
Taylor Rule

Portable Cross Sectional Multiplier - ///gs 95 95
TWEFE Cross Sectional Multiplier - .#g .6 1.3
Aggregate Multiplier - .Z .64 .64
Fixed Nominal Rate

Portable Cross Sectional Multiplier - .//lgs 95 .95
TWEFE Cross Sectional Multiplier - .Zg 1.07 .82
Aggregate Multiplier - .#4 1.12 1.14
Fixed Real Rate

Portable Cross Sectional Multiplier - ‘///gs 95 95
TWFE Cross Sectional Multiplier - .#Zg 95 .95
Aggregate Multiplier - .#4 1 1

The table shows one year multipliers for alternative monetary rules and cross-sectional loadings of the
government spending shock.

The results in Table 2 also show how general equilibrium forces that attenuate the
aggregate effect of a fiscal shock, like the aggressive monetary response implied by the
Taylor rule case, can actually increase the estimated cross-sectional effect, conditional on
the structure of the government spending shock. For example, a researcher studying the
effect of a government spending shock tilted to the low IES region in a ZLB environment
would estimate a smaller cross-sectional multiplier than a researcher doing so under
normal monetary policy. The opposite is true with a shock tilted to the high IES region.
The counterintuitive and context-specific way in which HEGE affects cross-sectional
estimates brings us to the second point of this section. Namely, how informative are TWFE
cross-sectional estimates of the aggregate fiscal multiplier?

Previous work has argued that under conventional monetary policy, such as a Taylor
rule that responds aggressively to inflation, the cross-sectional multiplier is likely to
serve as an upper bound on the aggregate multiplier. The reason is that TWFE cross-
sectional estimators do not include the contractionary effects of monetary tightening,
which typically dominate the dampening effects of expenditure switching or relative
intertemporal substitution. Conversely, at the ZLB, monetary policy is unresponsive, so
cross-sectional estimates tend to understate the aggregate effects, acting as a lower bound.
Table 2 shows that these conclusions may no longer hold once HEGE is present and is not
accounted for. In particular, changes in the bias of the government spending shock or the
differential interest rate sensitivities across regions can flip these bounding relationships
in either direction.

This highlights a key point: When general equilibrium responses to monetary policy
contaminate cross-sectional estimates, the sign and magnitude of the resulting bias be-
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come context-specific. As a result, TWFE cross-sectional multipliers cannot be reliably
interpreted as bounds on aggregate effects. In contrast, the portable multiplier //lgs,
which I show how to identify empirically, retains its validity to bound the aggregate fiscal
multiplier regardless of the monetary policy regime.

5.3. Performance of the Decomposition with Limited Information

In general, access to news shocks is limited. For this reason, I use the model to propose a
series of data moments that can be used to assess the performance of the framework in
settings with limited access to news shocks. In particular, I simulate data from the model
to study how the method performs in relation to the following two questions:
a. How close is the estimated HEGE term to its theoretical value?
b. Are the estimated portable elasticities an upper or lower bound for the theoretical
portable elasticities?
Throughout the exposition, I consider a researcher who applies the ex-ante decompo-
sition using a single date zero innovation in the GE variable.

How close is the estimated HEGE term to its theoretical value?. 1 measure the overall dis-
crepancy between the estimated and true HEGE term as follows.

H
(80) Do=H'Y

D measures the average percent deviation between the estimated and true HEGE term
up to horizon H. I express it as a percent to facilitate comparison across calibrations with
HEGE terms of different size.

A sufficient statistic for the overall performance of the decomposition is the difference
between the integral of the path for the GE variable in response to the shock of interest

and the integral of its counterfactual path using a single date zero shock, namely:

H H
(81) Dg = Z Rt+h|€gt - Z VRt+h|€rt°
h=0 h=0

Here Ry, pe,, is the estimated impulse response function of R to the aggregate shock k and
v the size of the counterfactual shock that solves the minimization problem given by (54)
in Subsection 3.3. The intuition behind this result is straightforward: the better we enforce
the deviation in R from its pre-shock value, the closer the estimation is to the true HEGE
term. The left panel in Figure 10 plots Dy against D, for two different model calibrations.
These calibrations differ only on the assumed persistence for the shock processes. The
calibration associated with a smaller Dy, yields a better overall performance as measured
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by Dq. The right panel adds a battery of alternative model calibrations with different
values for D; to illustrate the generality of the result in this type of models.
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FIGURE 10. Performance with Limited Information

The x-axis measures the cumulative differential between the path of R after the shock of interest and the
counterfactual implied from a decomposition using only a single date zero shock. The y-axis shows the
average (across time) difference between the true model-implied HEGE term and its estimated value. Positive
values on the y-axis imply that on average the estimated HEGE term is smaller than the true value. The figure
plots results for a model without discounting in the Euler equation.

Are the estimated portable elasticities an upper or lower bound for the theoretical portable elastic-
ities?. The right panel of Figure 10 shows that the sign of Dy is informative about whether
the estimated HEGE term understates or overstates the true HEGE term. In particular,
when Dy, is positive and the deviations of R from the pre-shock values are smaller under
the counterfactual than the realized path, then ), on average, underestimates the true Q.
The reverse is true when Dy, is negative. The intuition behind this result is that using a
counterfactual path that does not perturb the economy enough leads to an underestimation
of the HEGE term. In such a case, the estimated portable elasticity is an upper bound for
the true portable elasticity, in absolute terms.

The preceding discussion evaluated performance taking as given the strength of
forward-looking dynamics in the economy. Next, I repeat this exercise using simulated
data from economies with different degrees of forward-looking forces. I extend the base-
line model to allow for a discount term, « € (0, 1], in the Euler equation (McKay, Nakamura,
and Steinsson 2017, 2016). The lower «, the more muted the effect of expected future con-
sumption on current consumption decisions - with « = 1 in the baseline model. Figure 11

shows the simulation results for the same set of calibrations as in Figure 10 but considering
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different values for «. First, the two data moments discussed above apply equally well
regardless of the strength of forward-looking forces. Second, the plot shows that given a
value for Dg, the cost of using limited information decreases as forward-looking forces
become less important.

In summary, the previous analysis shows how data moments that are easy to compute
can be used to inform the performance of the method, given the modeling assumptions.
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FIGURE 11. Performance with Limited Information - Strength of Anticipation

The x-axis measures the cumulative differential between the path of R after the shock of interest and the
counterfactual implied from a decomposition using only a single date zero shock. The y-axis shows the
average (across time) difference between the true model-implied HEGE term and its estimated value. Positive
values on the y-axis imply that on average the estimated HEGE term is smaller than the true value. The figure
plots results for models with different degrees of discounting in the Euler Equation. A higher value (e.g.
yellow dots) implies stronger forward-looking dynamics.

5.4. Empirical Results Through the Lens of the Model

I take advantage of the mapping between the model and the estimation framework to evalu-
ate the precision of my empirical findings from Section 4. Concretely, I calibrate the model
to match the empirical value of Dy in order to answer: How well does the decomposition
with a single shock perform in this model economy?

To perform the model-based decomposition, I extend the two-region RANK model of
Nakamura and Steinsson (2014) to a two-region economy with two types of households:
Ricardian and hand-to-mouth (H2M). The environment thus combines the key features
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TABLE 3. Calibration - Matching Dy in the Model and Data

n Size of Home Region 5 Equal sized regions

SH, SF Regional exposure to eg .8,1.2 eg tilted towards Foreign region
I Average IES 1 Nakamura and Steinsson (2014)
oy Home IES 1.2 Home relatively more i sensitive
OF Foreign IES .8 Foreign relatively less i sensitive
Ar Share of Hand-to-mouth .2 Common across regions

Pei Persistence of Monetary Policy Shock .8 Set to match Dg

This table corresponds to the calibration used in Subsection 5.4. It details the calibration for parameter
values that are either new to the model or that differ from Nakamura and Steinsson (2014). The remaining
parameters are detailed in Table A9.

of Nakamura and Steinsson (2014) with the two-region TANK model of Herrefio and
Pedemonte (2025), who analyze heterogeneous regional responses to monetary policy
in a setting without fiscal shocks. I assume an equal share of hand-to-mouth households
across regions. These households play a key role in disciplining the level of the portable
multiplier, which I target to be around one at year two, consistent with the empirical
estimates in Section 4.

To generate cross-regional heterogeneity in the sensitivity to monetary policy, I intro-
duce region-specific intertemporal elasticities of substitution for Ricardian households.
This allows the model to replicate the observed variation in interest rate sensitivity and
its correlation with fiscal exposure. In this calibration, the gap between the TWFE and
portable cross-sectional multipliers, i.e., the HEGE term, is driven by the combination of
the real rate response to the fiscal shock and the heterogeneity in Ricardians’ IES across
regions.

In the following, I outline the rest of the calibration details. Most of the parameters
are set to their values in Nakamura and Steinsson (2014). These parameters are detailed
in Table A9 in Appendix D. Table 3 summarizes the parameters that differ from those in
Nakamura and Steinsson (2014) or are newly introduced in my extended model. I consider
equally sized regions such that n = .5. These equally sized regions are heterogeneously
exposed to national government spending shocks instead of region-specific government
spending shocks. This means that when government spending increases, it increases
everywhere but with different intensities across space, in line with the time-series variation
used in Section 4. I set the exposure shifters to national government spending shocks
to sy = .8 and sp = 1.2. Therefore, government spending shocks are biased towards the
Foreign region as sg > sy. These parameters have no direct counterpart in Nakamura and
Steinsson (2014) because the authors use region-specific government spending shocks. 3

36 Alternatively, one can think of region-specific shocks as setting s, = 1 and s = 0. In addition, this
parameter becomes irrelevant for homogeneous regions, and the only requirement for identification of the
cross-sectional multiplier is sy # Sp.
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To generate differential sensitivities to interest rate changes, I allow Ricardian households
to have region-specific IES. I set the average IES for Ricardian households equal to 1
as in Nakamura and Steinsson (2014) and the region-specific IES to oy = 1.2 and of =
.8. The Home region is relatively more sensitive to changes in the interest rate. This
calibration reproduces the correlation between the sensitivities to fiscal and monetary
policy shocks found in Section 4. This exercise targets the sign of the correlation between
fiscal and monetary sensitivity rather than the dynamic path of cross-sectional interest
rate responses, a task that I leave for future work. Lastly, the share of hand-to-mouth
households is set at A, = .2 for both regions to target the level of the portable multiplier
close to unity on the two-year horizon.

Crucial for this exercise are the parameters that govern the response of the real rate to
government spending and monetary policy shocks. To minimize my departure from the
calibration in Nakamura and Steinsson (2014), I match Dy by choosing the persistence for
the monetary policy shock, leaving the process for government spending unchanged. This
requires the monetary policy shock to follow an AR(1) with persistence pe; = .75. Formally,

(82) it = pjip-1 + (1~ Pi)[d)y?t + OrlTe] + uyy, Ujp = Pe;Ujp1 + €z

The nominal interest rate follows an ARMAX process, and the national government spend-
ing follows an AR(1) process, as in Nakamura and Steinsson (2014).

Next, I simulate data from the model and apply the decomposition framework assum-
ing that only a contemporaneous interest rate shock is available. Figure 12 displays the
results. The left panel plots the cumulative fiscal multipliers across horizons, comparing
the true model-implied portable multiplier (black dotted line) with several alternative
estimators. Both the TWFE estimator and the control function approach exhibit upward
bias relative to the true portable multiplier, driven by the positive HEGE term. In contrast,
estimates obtained by applying either the ex post decomposition or the ex ante decompo-
sition with a single shock correct for most of the omitted variable bias, bringing estimated
multipliers much closer to the true portable effect.

Importantly, both versions of the decomposition perform well even in a setting with
strong forward-looking dynamics (Del Negro, Giannoni, and Patterson 2023; McKay, Naka-
mura, and Steinsson 2016). This is consistent with the findings of the previous subsection,
which showed that a small Dy - that is, a small discrepancy between the realized and
counterfactual path of R -implies a limited precision loss under restricted information.

Figure 12B zooms in on the year-two multiplier and quantifies the extent to which each
method corrects for the HEGE term. While the TWFE and control function estimators over-
state the true portable multiplier by approximately 0.5 points, the decomposition-based
estimators align much more closely with the model-implied benchmark. In particular,
allowing for additional news shocks to the monetary policy rule (F = 2 or F = 4) yields only
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modest improvements relative to the single-shock decomposition. This highlights that
when the counterfactual path of R can be closely approximated, even with limited instru-
ments, the decomposition method delivers accurate estimates of the portable elasticities.
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FIGURE 12. Decomposition Results using Model Simulated Data

Panel (A) shows the estimates of the cross-sectional fiscal multipliers for different estimation strategies,
together with the true model implied values. Panel (B) zooms in at the 2-year horizon multipliers shown in
the left panel. Results are based on 100 repetitions.

6. Conclusion

This paper addresses the identification challenge that arises in cross-sectional empirical
strategies when units’ exposure to multiple aggregate variables is driven by common
exposure shifters. In such scenarios, the typical empirical design that relies on cross-
sectional variation in exposure combined with time fixed effects fails to separately identify
portable or partial equilibrium effects from general equilibrium driven responses. This
challenges the portability of these estimated elasticities, limiting their external validity
and their usefulness for policy analysis.

To overcome this problem, I introduce a decomposition framework that explicitly
separates portable effects from general equilibrium driven effects by jointly exploiting
cross-sectional and time-series variation. The method clarifies the conditions under
which portable statistics can be consistently estimated and implemented under varying
informational assumptions ranging from static to forward-looking dynamic environments.

Applying this framework to US data, I estimate the cross-sectional fiscal multiplier and
demonstrate that accounting for general equilibrium effects operating through monetary
responses significantly reduces the estimated cross-sectional multiplier. This finding chal-
lenges the conventional assumption in this literature that monetary policy responses are
fully absorbed by time-fixed effects, highlighting the importance of explicitly accounting
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for monetary-fiscal interactions when estimating cross-sectional multipliers.

More broadly, the framework can be applied beyond fiscal policy to settings where
cross-sectional estimates may be shaped by general-equilibrium feedback—such as mon-
etary, trade, or credit-supply shocks. By clarifying how to recover portable elasticities in
HEGE economies, it provides a foundation for reinterpreting and extending existing work
that combines micro data with aggregate shocks. Future research can use this approach to
obtain clean empirical counterparts of the objects required for model calibration, policy

evaluation, and counterfactual analysis.
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Appendix A. Decomposition Framework - Additional Derivations and Results

A.l. Static Setting - Further Details

Back to reference in main text.

This appendix presents the derivations for a generalized static setting with two-way feed-
back between aggregate variables. In the following, I reproduce the system of equations
that characterize a static economic:

- Yy
~ Yit_[5xsith+y><sirRt+ui+ut+uit
Gt— oth+ugt

(Sl) Rt = 8Gt + uyy
uy ~ N(O, O‘i) Vk=g,r

< o2
sig ~ N(SJ O—Sg)
N
Sir = §sjg + 1

2 2
uf ~N(0,0%.), uj,~N(0,0%).

With two-way feedback, the process for the aggregate variable G and R can be rewritten

as:
(A1) Gy = 1 Ugt + u
P71 6 & 15 P
(A2) Rt = 2 Ugt + 1 u
P71 6 & 15

Next, I outline the general formulas for each step of the decomposition.

Cross-sectional Step. The reduced-form regression from the cross-sectional step is given
by:

(A3) Y = bsigegt +CSig€rt + Aj+ Ar + eyt

The expected values of band ¢ are given by:

o B Y
(a4) ELb] = -5 1-od

o Bx Y
(45) E[C]_l—oc6+1—oc6'

Note that, due to the presence of two-way feedback, we cannot decompose b into two
additive terms as before. The first term on the right-hand side is a rescaled version of the
portable elasticity where the rescaling captures the contemporaneous feedback between
aggregate variables. Similarly for the HEGE term. However, this is not an impediment to
apply the decomposition as I show next.



Time Series Step. The estimated responses of R; to each aggregate shock are given by:

A6 Ry = E[v] = Ela] = .
(A6) t = Vegt + ae€rt + er, (V] [a] T~ bcr

The hypothetical €+ shock - denoted by € - satisfies the following:

(A7) ért = = 6.

SIS

Last Step.  As pointed out above, with two-way feedback we cannot in general neatly de-
compose the TWFE estimate into two additive terms but we can still consistently estimate
the portable elasticity in the same way as before. Evaluating the effect of €+ using ¢ from
the cross-sectional step and subtracting it from I;yields:

BP=B_6Xért
(A8) 3 ¥é  Pad  ¥d

:l—oc6+1—oc6 1-ad 1-ad
:[5‘

Monte Carlo Simulations with Two-Way Feedback. The performance of the decomposition is
illustrated using Monte Carlo simulations. I simulate data from an economy characterized
by the system of equations presented above with « # 0 and estimate three different specifi-
cations: (i) Baseline, (ii) Decomposition, and (iii) Control Function. Baseline corresponds
to the two-way fixed-effects regression. Decomposition and control function correspond
to the results of applying the framework presented above or the control function approach.
Figure Al presents the distribution of the estimated coefficients for each strategy in an
economy with 3 =y =0 = ¢ = « =.5. The population value for the portable effect is .5 and
the omitted variable bias due to HEGE is .33. There are two takeaways. First, the baseline
estimates are biased and centered on ¥ + Q = .83. Second, both the decomposition and
control function approach consistently estimate °.

A.2. Decomposition a la Sims and Zha (1995) - Further Details

This appendix presents derivations for the ex-post decomposition in a more general econ-
omy than the AR(1) example in the main text.
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Distribution of point estimates for the Baseline, Decomposition Framework and Control Function estimation
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Back to reference in the main text.

Let the data-generating process be characterized by

_ s
Si,g = €%,
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Sy = i €

J
Gt = Z pngt—j + Ugt,
j=1
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The derivations that follow set \; = 0 for notational tractability. This is without loss of
generality.
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The total and portable effects of a shock to s; ;G in t = 0 for period ¢ + h are given by:

oG K OR
(A10) Bh _ Z Bs at+h s Z d) t+h s
s=0 Ugt k=0
oG
Al]. — t+h— S.
(A1) B - 2 B

The HEGE term at horizon his Qy = Zk 0 YkP—3 aR”h s

at horizon h with respect to ;¢ is given by:

. The total derivative of local output

K
(A12) vi =Y v

Reduced Form Analysis. Consider the following panel local projections with two-way fixed

effects:
(A13) Yitn = bpSig€gt + CpSig€rt + Nip + A + €itpy

where egr and e+ are the innovations to G and R, respectively. The expected value of I;h is
given by:

S coV[Gy ps, Egt] COV[Ry, p_1 €at]
(A14) + A Y (I) + y © g
Z: [€gt] kzg) V[egt]

)

VseS suchthath—s>0and V ke K such that h— k> 0. The expected value of i’r,h is
given by:

K

(A15) Z

% [Resh-to €rt]
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V k e K suchthat h—k > 0. If Cov%fgr’lt’]e”] = Covng[tgght’]egt] for all h € H, then the cross-
sectional step directly provides us with an estimate of ); at each horizon. However,
whenever the conditional path of R given each aggregate shock differs, an additional
correction is needed. Implementing this correction requires information from time-series
analysis. Basically, we need estimates for the path of R conditional on the realization of
each aggregate shock.

The time-series step estimates the path of R conditional on each aggregate shock using:

(A16) Rt+h = vhegt +ap€rt t er,”h.



The expected values v, and a;, are given by

N R M R
(A17) E[ay] = w _ Z om coviert,Riop-m]  cov[ert, eppi]
Viert] m=1 Viert] Vet
cov[egt, R N cov[egt, Ry 1,
Viegt] n=0 V{egt]

for all m € M such that h — m > 0 and for all n € N such that h — n > 0. For the remainder of
this section, I denote with Rg; and Ry the conditional paths of R after each shock which
are given by the coefficients above.

The coefficients ¢;, from the cross-sectional step identify the differential response
of local output to a unit increase in €¢. This €, shock implies a path for R given by a;,
for each h. However, to construct the HEGE term we need the path for R given by the
coefficients v;,. Following Sims and Zha (1995), I outline how to replicate R|g using a series
of contemporaneous surprises to R dated s > 0 for all s € H.

For h = 0, we want to find the size of the €,y shock that equalizes both paths on impact:

(A19) Rg0=Rro€r0
cov|€gt, R
(A20) M = &0
V[egt]

An et shock of size € yields an interest rate response equal to Ry 9. Next, we can
evaluate E[(y] for an innovation to R of size €, instead of unity:

_ coV[Ry, ert] -

(A21) E[¢o] x €r0 = Yo Vien] <10

. cov[eg, Rt]
(A22) =Yo —V[egt]
(A23) = Q.

This gives us the differential output effect of an innovation to R of size €,y. This is equal to
the differential output effect of an innovation to G that operates through the endogenous
response of R. In other words, the HEGE term for & = 0.

For h = 1, it will be the case that, unless Ry + and R; ; are multiples of each other:

(A24) Rg)l * Rr}léro.

This means that the initial rescaling by €,( is not enough to equalize the conditional paths
of R at horizons h > 0. The next step is to feed in a contemporaneous innovation at date



h =1 that accounts for the remaining difference:

(A25) érl = Rg)l - Rr,léro
(A26) _ cov[egiRes1]  cov[ersRea] cov]egtRe]
Viegt] V(ert] Viegt]

where €, is an innovation to R taking place at t = 1. This gives us two shocks to R: €, €,1]-
We can evaluate the propagation of these shocks on local output for h =1 as follows
(A27)

. - . - _ cov[ert,Rer1] - cov[ert, Re] |coviegt, Re]
Blen] x & + Blco] x &n = [YO V{ert] " Ven] ] Viegt]
- COV[Ry, ert]| cov[€gt; Res1]  cov[ert, Rys1] coV[€gt, Rt
Vier] Vegt] V{er] V(egt]
. cov[ers, Req] covlegr, Re]  _ cov[egr, Ri]
T Vlen]  View] Y Vieg]
s cov[egt, Rys1] ~ ~0CO'V[€rt, Rt41] covlegt, Re]
Viegt] Viert] Viegt]
. covlegt,Rt] _ cov[egt, Rei1]
T Ven] YT View
-0,

In period h = 1, it is as if the economy was responding to a shock of size €, that took place
a period ago plus to a shock of size €, taking place contemporaneously. The combination
of these responses identifies Q.

As before, for h = 2 we construct a contemporaneous shock at date h = 2 equivalent to
the difference between R, » and the R path implied by the sequence of shocks fed in so

far:
(A28) €r = Rg,z - Rr,zérO - Rr,lérly

where Ry 2€, is the response of R at h = 2 to the shock that took place at ¢ = 0 and R 151
is the response of R at h = 2 to the shock that took place in the previous period. Note that
because R o = 11 omit it from the left-hand side. Once we have ¢, we can construct an
estimate for Q, as:

(A29) E[Ez] X érO +E[61] X érl + E[ao] X érZ = Qz.

The two formulas below generalize the computation of the sequence of shocks €, and



the estimation of O, for any h > 0.

h

(A30) f/h = Z &h—jéHj Vhe H,
j=0
. h

(A31) Qh = Z 6h,két+k Vhe H.
k=0

A.3. Dynamic Setting without Anticipation Effects - Further Details
A.3.1. Control Function Approach in Dynamic Settings

Back to reference in main text.

The reason why the control function approach fails to control for the dynamic path
of the GE variable in response to a shock of interest ey is independent of whether the
setting is a panel or a time-series regression. Given this, in this Appendix I provide details
on the mechanics of the control function approach using an aggregate setting.

Throughout, I will use the Frisch-Waugh-Lovell(FWL) theorem to derive the expected
value of elasticities estimated using the control function approach for three different
data-generating processes. The Frisch-Waugh-Lovell theorem implies:

. 12 .12

(A32) b- %

where:
X% = x - 0z, 0= CO:[[;C’] il ,
e

AR(1) Process for G and R.  First, I consider the following DGP:

(A33) Gt = pgGy-1 + Ugt
(A34) Rt = prRi-1 + 3Gt + urt
(A35) Y = [?)Gt +YR: + Uyt

where I assume the researcher observes an innovation to G, egt, correlated with ug; and
orthogonal to lagged realizations of aggregate variables and the other structural shocks.



The control function approach local projection is given by:
(A36) Yt+h = tht + Cth +€n

where G; is instrumented with eg;. The FWL theorem implies the following expression
for the 2sls estimate I;h:

. cov[YLRt elRf]
(A37) E[by] - — L2 &

h Rl - T s T
cov[GRe egff]

The expanding and re-arranging the numerator yields:

(A38)
R R cov| G, R
cov[Y; 7, egt ] = Bpg(cov[Gt, egt] - ﬁwv[&, egt])
cov|R R;
+ y(cov[RHh, €gt] — %cov[l{b (—:gt])

cov[Gt, Ri]
V[R¢]

cov[R¢.p, Re]

VIR cov[Ry, egt]),

= Bpg(v[egt] -8 v[egt]) +y(cov[Rt+h, €gt] —

where I used the fact that cov[Ry, €gt] = 6v[€gt]. Similarly, the denominator can be ex-

pressed as:
IR, _IR cov[Gy, Ri]
(A39) cov[Gy ™, egy '] = v]egt] - STR;]v[egt].
Putting both pieces together, yields:
(A40) E[by] = = Bop + ﬁ(Rmegt =Ry, * Rh|Rt)
cov[G; ™, €t d

COV[ Ry, Xt ]

where Ry, = VD]

A.3.2. Dynamic Setting - Monte Carlo Simulations

Back to reference in main text.
In the following, I detail the DGPs used to produce Table A3 in the main body of the paper.



For reference, I reproduce the general system of equations:
P Gy u
=Y M;| T+ B| Y,
Re| =21 Ry ; Urt
(S2)
S K L y
Yiten = D BsSigGrones + 2. ViSirRechoic + D Wi¥i pung + Ui + Uy + U5y, VR 2O,
5=0 k=0 1=1

Each DGPis evaluated at three different values for the correlation between the exposure
shifters s;; and s;,. I fix the standard deviation of all idiosyncratic shocks to unity. The
sample size is set to N = 300, T = 1000, and the number of repetitions is set to J = 1000.

TABLE Al. Monte Carlo DGPs — Dynamic Setting

DGP # Description Mgy My Mgr Mrg Bs Yi )
1 VAR(1), no lagged Y; 0.8 0.8 0.5 0.0 {1.0} {05}  {0.0}
2 VAR(1), AR(1) in Y; 0.8 0.8 0.5 0.0 {1.0} {0.5} {0.8}
3 VAR(2), AR(1)inY; {07,02} {04,05} {0.5,00} {0.0,0.0}  {1.0} {05} {08}
4 VAR(1), lagsin Gand Rin Y; 0.7 0.4 0.5 0.0 {0.5,0.2} {0.5,0.05} {0.0}
5 VAR(1), unrestricted 0.8 0.8 0.5 -0.3 {1.0} {0.5} {0.0}

Each DGP is evaluated at ¢ € {0.1, 0.5,1}. Parameters myy denote the effect of variable y on variable x in the
VAR at different horizons. The fs, vy, and {; parameters correspond to the effects of G—s, R;_j, and Y;;_; in
the unit level outcome. Zero entries indicate either exclusion or no persistence.
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A.3.3. Two-Way GE Feedback - Two Sources of Omitted Variable Bias

Back to reference in main text.

This appendix studies the cross-sectional identification of partial-equilibrium elas-
ticities (PE) when there is two-way feedback (2W-GE) between aggregate variables. The
general setting is still characterized by (S3) - which I reproduce below for convenience:

] J
Re| =1 Ry j Urt

S K L

Yie = 3 BssigGros + 2 ViSirReog + 2o Wi ¥y g + 1+ up + 11,
s=0 k=0 =1

(S2)

Sir = d)sig + Ui, -

Necessary Conditions to Difference-out GE using reduced form analysis. I study the necessary
conditions for a reduced-form TWFE local projection to identify the partial equilibrium
effect of a change in G; on Y};, . Concretely, the regression under consideration is given
by:

RF
(A41) Yieen = by Sig€gt + Nip + Ay + €ty

where eg; is an observed innovation to G in period t. Let bﬁF be the coefficient of interest,
where the superscript RF refers to reduced form. To build intuition, I start with the
following simplified DGP for G and R:

(A42) Gt = pgGp1 + Rt + Ugt, Rt =prRy-1+0Gt + Ut

The VAR(1) representation can be written as

Pg xpr o 1
A43 Gt = Gyq + Ry 1+ Urt + u
( ) t 1-wd =1 1-wd t=1 1-ad rt 1-wd &t
Pr dpg 1 8
Ad4 Ry = Ry 1+ Gyq + Urt + Uot.
( ) t 1-wd =1 1-wd t=1 1-ad rt 1-wd gt

Then, consider a simple DGP for Y}; given by:

(A45) Yit = Bsith + ’YSirRt + Uity Sir = (bsig + eff.
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It can be shown that the coefficient of interest converges to the following expression for
h =0and h = 1, respectively:

R byo *RF B(Pg + odpr) ¢Y5(Pg +pr)
+ bl - + .

A46 bRF -
(A46) O "1-as 1-ad’ (1- «d)2 (1-«8)2

Now, consider an economy in which exposure shifters to G and R are uncorrelated in the

cross-section - that is, ¢ = 0. This leaves us with the following.

: B(pg + axdpr)
* B, b]. g (]_g_W

(A47) bo — + Bpg.

1-od
Both reduced form coefficients are contaminated by GE effects even in absence of HEGE.
A necessary condition to fully difference-out GE using a reduced-form cross-sectional
regression is that there should be no two-way feedback between the aggregate variable
of interest and any variable that responds to it in general equilibrium. Otherwise, the
reduced-form coefficients identify a rescaled version of the true partial effect even when

covsig, Sir) = 0.

Is 2sls the solution?. Suppose that instead of using the reduced form, we chose to instru-
ment G; with eg:. The first stage coefficient is given by:

(A48) G

The 2sls estimates converge to:

B(pg + xdpr)

Ad 225 o _ 728

# Bpg-

For this DGP, using eg as an instrument for G; removes GE on impact but not at h = 1
(nor at any h > 0). What if instead we instrument G, ; with eg;? In this case, the first stage
coefficient is horizon-specific, and for h = 1, we get:

oFS _ pg + odpr
L (1-as)?’

(A50)

The first stage coefficient for h = 0 is the same as in the previous case. The 2sls estimates

converge to:

728,H 72S,H
(A51) bo =B, b1 =B,

where I use the subscript H to denote that these estimates correspond to a 2sls regression
where G;,;, is being instrumented for, instead of G;. In the context of this specific DGP,
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instrumenting G,, j identifies the impact effect of a change in G and the local projection
recovers the same coefficient at all horizons. Note that this does not identify the cumulative
impulse response but does identify an object that is free of GE. Crucially, this worked
because, for this DGP, G,, j, captures, or blocks, all paths between eg; and Yj;, 1. Consider
departing from this scenario by adding an autoregressive component in the unit-level
outcome:

(A52) Yir = BsigGr + Yy g + 1),
or, for lagged G to have an effect on the unit-level outcome:
(A53) Yit = Bsith + Blsith_l + u%

Now, G, no longer blocks all channels through which a change in eg affects Yy, p.
Therefore, instrumenting G, ;, with eg will not be enough to difference-out GE effects.
The 2sls estimates for these two alternative DGPs at h = 1 are:

A (pg + doxpr) < (pg + doxpr)
(A54) B =p—t—— o+ B £ B(og+ ), B = B+ By % Bog+ B,
when instrumenting G, and

S 1- b ~2S 1- b
A55) B2SH o papp— 0 sp(pe ), BT BB 4 Bpg+ P,

when instrumenting G, ;. The expressions to the right of the # sign correspond to the PE
elasticities for each DGP and horizon.

The Decomposition Framework also addresses this OVB.  Using the reduced-form responses
estimated from:

(A56) Yit+h = thigegt + Chsigert + TWFE + Cit+h

(A57) Rt+h =Vp€gt +ap€rt + er,t+h:

one can implement the decomposition framework as outlined in 3.2 and consistently
estimate the partial equilibrium elasticity at all horizons, even when there is two-way
feedback between aggregates in a system like S2. Next, I present results from a Monte
Carlo simulation exercise and the algebraic details for the first two horizons in a simplified
DGP.

Monte Carlo Results. For illustration, I ran a Monte Carlo exercise in which I simulate
data from alternative DGPs that fit into S2 to estimate b,. Throughout, I set ¢ = 0 to
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focus on the omitted variable bias that arises independently of HEGE. The sample size
is set to N = 300 and T = 500, the number of repetitions to J = 1000, and the standard
deviation of all idiosyncratic shocks to unity. Table A2 provides further details on each
of the DGPs used in the Monte Carlo exercise. I consider four estimation strategies: (1) a
TWFE reduced-form local projection, (2) the decomposition framework, (3) a TWFE local
projection instrumenting G with egt, and (4) a TWFE local projection instrumenting G, 5,
with egt. For each estimation strategy k, DGP z and horizon h, I compute the absolute
difference between the true portable elasticity, [31; ,» and the average estimate across all
repetitions and then normalize it by th to make it comparable across data-generating

processes:
TR B, - BE
kK _ j=1"jzh zh
(A58) ok, = % .
zh

Consistency requires Ggh — 0. Table A3 shows the mean and standard deviation of Ggh
by horizon and estimation method. The decomposition approach outperforms all three
estimation strategies at every horizon and yields unbiased estimates of the true portable

elasticities, with only minor bias at longer horizons.

TABLE A2. Two-Way GE - Parameterizations of DGPs in Monte Carlo simulations

DGP# Description Mgg Myr Mgr Mg Bs Yi Py b
1 AR(1) in G and R, no lagged Y. 06 06 -03 05 {1.0} {0.5} {0} 0
2 Adds persistence in Y;; with one autoregressive lag. 06 06 01 05 {1.0} {0.5} {0.8} 0
3 Adds distributed lag response of Y to G via multiple 5. 06 0.6 01 0.5 {1.0,04,0.2} {0.5} {0} 0
4 Combines lagged Y and lagged G. 06 06 01 05 {1.0,04,02} {05} {0.8} 0
5 Adds three autoregressive lags of Y. 06 06 01 05 {1.0} {0.5} {0.5,0.3,-0.1} ©

Each DGP is evaluated at ¢ € {0.1, 0.5,1}. Parameters myy denote the effect of variable y on variable x in the
VAR at different horizons. The s, v, and J; parameters correspond to the effects of G, R;_;, and lags of
Y;;_; in the unit level outcome. Zero entries indicate either exclusion or no persistence.

Back to reference in main text.

Decomposition Framework with 2W-GE - Detailed Algebra for h = 0,1. The DGP is the same
as that used before, which assumes a VAR(1) process for aggregate variables and only
contemporaneous G and R to directly affect the local outcome.

Gt = pgGro1 + &Rt + Ugy,

Rt = prRi-1+ 3Gt + Ure,
(A59) y
Yit = BSith + ‘}/SirRt + uit,
Sip = OSjg + U, Sig LU
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TABLE A3. Absolute Mean Relative Bias by Estimation Method and Horizon

Estimation Strategy h=0 h=1 h=2 h=3 h=4 h=5

Decomposition Framework 0.002  0.005 0.009 0.015 0.019  0.027
(0.001) (0.002) (0.006) (0.010) (0.010) (0.016)

Reduced Form 0.002 0078 0211 0391 0587  0.788
(0.002) (0.098) (0.273) (0.469) (0.636) (0.744)
IV (t) 0.001 0079 0213 0391 0.587  0.787
(0.001) (0.097) (0.273) (0.469) (0.636) (0.743)
IV (H) 0.001 0624 1556 3494 5159  8.680

(0.001) (0.026) (0.191) (1.662) (1.123) (2.353)

Standard errors shown in parentheses. Values are reported as fractions of the true portable elasticity (1 =100
%). The sample size is set to N = 300 and T = 500 and the number of repetitions to J = 1000.
Back to reference in main text.

Cross-sectional Estimates. The estimated coefficients of the cross-sectional step for h = 0,1
converge to:

. B Yo 2y B(pg+0‘5pr) yé(pg'*'pr)
(A6 Elho)= 175 " ey Hhl=="e " a-w?

.1 Bx v . Balpg+pr) v(pr+dxpg)
(asl) Blo] = - 1-oad’ Blal = (1-ad)? ’ (1- «d)?

Time Series Estimates. The estimated coefficients from the time series step for h = 0,1
converge to:

P+

(A62) E[ag] = 1_1a5: Ela] = ?1t oc?))f)
5(pr

(A63) E[w] = 1_50(5) En= ((1p— ;;fz)'

Decomposition. The counterfactual shock for h = 0 satisfies the following:

[ |
1-ad 1-ab
(A65) 6 = éro.

(A64) Vo = Ap€rg — €10

Next, we can evaluate the differential response to R at €,y and subtract it from the differ-
ential response to G:

R o B ¥ Ba Y
E[by] - E - - 8
[bo] [Co] x €ro 1_“5+1_o(5 [1—o(6+1—oc5]><
_[5(1—0(6)+ ¥y
o 1-ad 1-od 1-ad

= B.
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In period h = 1, this shock €, = 6 implies the following realization for Ry,;:

_pr+dapg _ 8(pr+pg)

(A66) rl= - w)? g1 = e

We want to find a second date h = 1 shock €,1 such that:

E[V1] = E[a;] x €0 + E[ap] x €11

S(pr+pg) _prrdapg. 1
(1-a8)2 (1-ad)2 1-od

—Tep = 5pg-

(A67)

X €r1

Now we can evaluate the differential response of local output to the propagation of these

two shocks to R:[€,9 = 8, €,1 = dpg]:

(A68) E[él] X ér() + E[&O] X érl;

and subtract it from the differential response of local output to a G shock in period t + 1:

; [ +adpr)  YO(pg +pr
A HalxEo=Elalxn - B((plg_ £>2’ z y(1( ?gocégjz)]

(A69) -

—Ba(pg+ pr)  Y(pr +8xpg) 5 Boc+y
i (1-ad)? (1-0d)2

= Bpg

- pY.

This process can be extended to further horizons.
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A.3.4. Robustness to cov[eg, A¢] #0

Back to reference in main text.

This appendix lifts the assumption that the researcher observes a purely structural
innovation to G;. I consider settings in which eg, the observed shock of interest, is corre-
lated with the realization of a third aggregate variable A;. This nests cases in which the
shock is not a source of exogenous variation at the aggregate level but satisfies exogeneity
in a cross-sectional setting, conditional on the exposure shifters and time fixed effects.
For illustration purposes, consider the following minimal setting.

(A70) Gt = pgGy_1 + Ugt, Ugt = €gt, +1gt,
(A71) Rt = prRt_1 + 0Gt + Uy,

(A72) At = KGy + ugy,

(A73) Yit = BsijgGr + VSRt + XSijgAr + Uj + ug + ug;,
(A74) Sir = Osjg + U,

(A75) coV[Sig, Sia] = 0.

Here, A; is a third aggregate variable that contemporaneously responds to changes in
Gt and to its own structural innovation. In addition, units are differentially exposed to
A according to the exposure shifter s;, and the parameter x. In a cross-sectional TWFE
regression, the shock eg; satisfies exogeneity with respect to A if cov[s, s;,) = 0. That is,
the cross section identifies a causal effect of ey if there is no HEGE in relation to A;.

Next, I show that the decomposition framework consistently identifies the portable
elasticity in settings that use variation correlated to a third aggregate variable. I consider
DGPs that fit into the following system of equations:

Gt p Gt—] Ugt
Rt :ZM]' Re_j|+Blur |
=1
At J Atfj Uat
(S3) S K W

Yien = Z BssigGHh—s + Z YiSirReshk + Z XwSigAtih-w»
s=0 k=0 w=

L
y
WY g Uiy Uy T U
-1

= . s . = . s . ~
Sir = Osjg + 1, Sia = ESjg + U}, Sig ~ N(1, gy
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For simulations, I study DGPs that (i) satisfy the identification assumption of the
researcher - namely cov[s, s;,] = 0 (€ = 0); and (ii) fail to satisfy it because they display
HEGE in A, on top of R;. In both cases, the decomposition identifies its object of interest.
That is, a sequence of elasticities that are clean of the effects operating through changes
in R. The difference is that in the first case, the estimated elasticities are also independent
of changes in A, whereas in the second case they are a combination of the true portable
elasticity and the HEGE channel associated with A;. Table A4 provides details on each of
the DGPs used in the Monte Carlo exercise. In all cases, the sample size is set to N = 100
and T = 500, the number of repetitions to J = 500, and the standard deviation of all
idiosyncratic shocks to unity. For each estimation strategy k, DGP z and horizon h, I
compute the absolute difference between the true portable elasticity, th and the average
estimate across all repetitions and then normalize it by [31; , to make it comparable across
data-generating processes:

1 ik aP
TR B B |

P
Bzh

k
(A76) 0%,

Consistency requires e’;h — 0. Table A5 shows the mean and standard deviation of e’;h by
horizon and estimation method. The decomposition approach consistently recovers the
true portable effects as opposed to the control function approach.

TABLE A4. Three-Way GE — Parameterizations of DGPs in Monte Carlo simulations

DGP - Description Mgg mgr Mga My Mg Mrq Mag  Mag Mar Bs Yk Xw P &
Aisiid.. 09 {00} {00} 07 {050} {030} 00 {02} {0,0} {1.0} {0.5} {02} 08 0
Adds persistence in Ay. 09  {0,0} {00} 07 {050} {030} 04 {02} {00} {10} {0.5} {02} 08 0
Adds R — A channel via mg;. 09 {00} {00} 07 {050} {0.3,0} 04 {02} {040} {10} {0.5} {02} 08 0
Adds A — G channel via mgq. 08  {0,0} {0.,0} 07 {050} {0300 04 {02} {020} {10} {0.5} {02} 08 0
3W-GE. 09 {-03,0} {0.1,0} 07 {050} {0.3,0} 04 {02} {02,0} {10} {0.5} {02} 08 0
Adds lags of G, R, and A in Y;,. 09 {-03,0} {0.,0} 07 {050} {0.3,0} 04 {02} {020} {10,02} {0502} {0.2,03} 08 0
Adds HEGE-A via & > 0. 09 {-03,0} {0.1,0} 07 {050} {0.3,0} 04 {02} {02,0} {10} {0.5} {02} 08 05

Combines lagged inputs with HEGE-A. 0.9 {-0.3,0} {0.,0} 07 {050} {03,0} 04 {02} {02,0} {10,0.2} {0502} {02,03} 08 05

Each DGP is evaluated at ¢ € {0.1, 0.5, 1}. Parameters myy denote the effect of variable y on variable x in the
VAR at different horizons. The Bs, vy, Xw and Y; parameters correspond to the effects of Gi—s, R;_, A;_; and
Y;;_; in the unit level outcome. Zero entries indicate either exclusion or no persistence.
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TABLE A5. DGPs with cov[A¢, eg¢] # 0 - Absolute Mean Relative Bias by Estimation Method

A4,

A.S.

Estimation Method h=0 h=1 h=2 h=3 h=4 h=5 h=6

Decomposition 0.004  0.005 0.007 0.009 0.010 0.011 0.012
(0.003) (0.003) (0.005) (0.006) (0.007) (0.008) (0.010)
Control Function 1.266  0.560 0.331 0.236 0.246 0.343 0.453
(0414) (0.167) (0.073) (0.129) (0.189) (0.202) (0.210)

Standard errors in parenthesis. Values are reported as fractions of the true portable elasticity (1 =100 %).
Based on J = 500 repetitions with N = 100 and T = 500.
Back to reference in main text.

Forward-Looking Settings - Further Details

DSGE Monte Carlo Simulations

Figure A2 shows the response of R to eg, the fiscal shock, and to each of the two scenarios

for the persistence of €;;, the monetary shock.

—— Egt
- €t - Misaligned
—e— ¢ - Aligned

0.4

0.3

0.2+

R Response - Percentage Points

NN
-

0.0 — T v . :
1 2 3 4 5
Horizon

FIGURE A2. Path of R Conditional on Aggregate Shocks

Back to reference in main text.

Figure A3 presents additional simulation results. The upper row is an extension of

Figure 3 in the main text that considers additional news shocks. It can be seen that, both in

the Misaligned and Aligned, incorporating further news shocks improves the performance

of the decomposition until it finally recovers the true portable elasticities. In the Aligned

case, using news beyond F = 4 yields negligible gains.

The bottom row considers an economy with weaker forward-looking dynamics by
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introducing a discount term in the Euler equation®’ of households (McKay, Nakamura, and
Steinsson 2017). Discounting weakens the importance of expected output gaps for current
consumption responses and, overall, moves the economy closer to the Markov setting.
I set the discounting parameter to o« = .95 (relative to a baseline without discounting,
o = 1). As expected, decreasing the strength of forward-looking dynamics improves the
performance of a decomposition that uses a limited number of news shocks.

%The Euler equation is given by:

1

(A77) (CC: ) =IBE[(L+141)],

t+1

where o is the discounting parameter and ¥ is a constant calibrated to match steady-state consumption.
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FIGURE A3. Forward-looking Settings - Additional Simulation Results

Misaligned refers to the case where the trajectory of R differs across shocks, while Aligned corresponds to the

case where these trajectories are relatively similar. The top row shows the estimation results using different

numbers of news shocks in an economy without discounting (i.e., standard Euler equation), while the bottom

row corresponds to an economy with a discounted Euler equation (McKay, Nakamura, and Steinsson 2017).

The discounting parameter is set to « = .95.
Back to reference in main text.

Back to reference in main text.

A.6. Inference using a GMM Setup

Back to reference in main text.
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This appendix describes the procedure to compute standard errors for the estimated
portable elasticities.

Let 6" denote the (Kp + K¢) x 1 vector of parameters at horizon h, where K, is the
number of panel parameters and K; is the number of time-series parameters. We estimate
0= [ehl]Ih{:1 using just identified GMM. For panel regressions, assume the data are already
two-way demeaned; let X;; represent the two-way demeaned version of the variable x;;.
The moment conditions for each horizon h are given by:

Phoahy _ 1 ks
(A78) mk (6 ) = ﬁ . xitei,t+h) k= 1,.. .,Kp,
1,t
T,h 1 !
(A79) mk’ (eh) = T inlf< €t+hs K = L..., Ky,
t

where ¢; 1,1, and e;,, represent residuals from the panel and time-series regressions,
respectively. Throughout, I refer to the first set as panel moment conditions and the second
set as time-series moment conditions. Define the full vector of moment conditions for horizon
h as:

(480) m(8") = (mPh(6") mT(oM)),

where mP"(0") and mT>"(6") stack the panel and time-series moments, respectively.
Let the stacked moment vector across all horizons be denoted as:

(A81) m(©) = (m!(6}) m?(62) : mH (0H).)
The vector of parameters O can be estimated in one step by minimizing the quadratic
form:
(A82) © = argmin m(©)' Wm(©),
C)

where W = I, the identity matrix.

A.7. Standard Errors

The (Kp+K;)Hx (Kp+K¢)H covariance matrix of the moment conditions, S, is calculated as

follows. First, [ assume zero covariance between moment conditions on different horizons

h, implying that S is a block diagonal with blocks Sh. Within each horizon h:

a. For panel moments, the approach can flexibly accommodate three clustering ap-
proaches: (i) time, (ii) unit, and (iii) two-way clustering, denoted respectively by S‘?,
.§lh, and S‘gw.
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b. Fortime-series moments, I employ a Newey-West heteroskedasticity-and-autocorrelation
consistent (HAC) estimator:

A A L ~ A
Stac=T(0) + LwO [P0+,
where
A B 1 I “h NN B {0
W)—;; "OMymSy @My, w(t) = -

c. To capture the covariance between panel and time-series moments within the same
time period, define the aggregated moment vector at time ¢ as:

Nzl 1 lt lt+h

Z ~K -
(ASS) m?(eh): N =1 lt lt+h

1
Xt€rih

K;
Xt €tih

Then, the time-cluster robust covariance between panel and time-series moments at
horizon h is:

. 1T . .
(A84) Spar = 2 m (0)mi (8"
t=1
Thus, the complete covariance matrix for horizon h is:
(A85) ShZ(A t PXT)'
The full covariance matrix across all horizons is given by the block diagonal matrix:
(A86) S = diag(s%, 82, ..., 8.
The asymptotic variance-covariance matrix of © can be computed as:
3 L ATA-1 A1
V(O) = T(G Q7°G)

where G is the Jacobian of the moment conditions evaluated at ©. The standard errors for
the vector pF = {Bg Ih{=0 can be computed using the Delta method as follows:
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SE(BF) =\/VfTV(O)VS,

where V f is the Jacobian of p¥ with respect to the vector of estimated parameters.

To evaluate the properties of the proposed inference procedure, I conduct Monte
Carlo simulations in both static and dynamic scenarios. In the static case, standard errors
obtained from the joint GMM system match those derived using the control function
approach only if the cross-moment covariance between panel and time-series conditions
is appropriately accounted for. However, ignoring this covariance leads to significant
over-coverage. Thus, the equivalence result established for the point estimates of the
decomposition and control function approach extends to inference when appropriately
considering the shared information between panel and time-series moments. For dy-
namic settings, the simulations further indicate robust coverage properties, particularly
favoring time-clustered panel moments over unit-level clustering. Similarly, ignoring the
cross-moment covariance between panel and time-series moments in general leads to
over-coverage, particularly over shorter horizons.

100 A

80

(=2}
o
L

Frequency

40 A

20 A

0.0035 0.0040 0.0045 0.0050 0.0055 0.0060 0.0065
Standard error

GMM w/covariance: 90.3 Control Function: 90.3
GMM w/o covariance: 97.7

FIGURE A4. Monte Carlo Simulation Results - Static Setting
The plot shows the distribution of standard errors from the control function approach (light green), GMM
with time-cluster covariance between panel and time series moments (blue) and GMM with zero covariance

across panel a time series moments. The coverage rate is shown in the legend next to the label for each case.
Based on 1000 repetitions.

Back to reference in main text.
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FIGURE A5. Monte Carlo Simulation Results - Dynamic Setting

The plot shows the coverage rate at different horizons h for the case that (i) computes time-clustered covariance
matrix across panel and time-series moment conditions, and (ii) sets these covariances to zero. Based on 100
repetitions.

Appendix B. Data

This appendix presents additional details and descriptive statistics on the data used for
the estimation of cross-sectional fiscal multipliers in Section 4.

In Table A6 I present descriptive statistics for the main time series and cross-sectional
variables used in the regression analysis. The sample period is 1967-2007. Gf measures the
one-year change in real per-capita defense contracts relative to lagged GDP. The average
change in Gf is close to zero with a standard deviation of around .3 percent of output. The
standard deviation of the Romer-Romer monetary policy shock is close to 1 percentage
point. The average exposure to defense spending is .85 with substantial heterogeneity
across space. The participation of defense spending in output for the most exposed region
is more than three times that of the aggregate economy, whereas for the least exposed
one the participation is close to one tenth.
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TABLE A6. Descriptive Statistics for Time Series and Cross-Sectional Variables

Variable Mean Median StdDev Min  Max Units
Aggregate Variables

Gf 001 -004 028  -078 103 %of Y/
T-bill Rate (3M) 420 425 3.02  0.03 14.03 %
Real T-bill Rate (3M) 1.19 1.39 193  -3.37 545 %
Romer-Romer MP shock  0.00 0.21 0.93 -2.18 1.89 %
Cross-sectional Variables

Y< 1.68 1.65 382 2952 3439 %of YX°
GS -0.01  -0.01 0.88  -904 758 %of VX'
sge 0.85 0.79 054 015 3.9

v 16731 16067 3107 11581 30096 Realp.c.

TABLE A7. Top 5 States by Exposure to Defense Spending - 1966-71 Average

Top 5 States - 1966-71 Average

Jbre
18

Connecticut
Texas
Missouri
California
Massachusetts

3.19
1.87
1.70
1.68
1.48
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FIGURE A6. Time Series Data

Nominal variables are deflated using the consumer price index. The Romer-Romer monetary shock series is
expressed in standard deviations around a zero mean.
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Appendix C. Estimation Results

C.1. HEGE Test - Robustness

Figure A7 presents the estimation results after removing the interaction between s;, and

the fiscal shock. Formally:
(A87) Y§+h = Cp X Siglt + Ajpy + Agp, + Controls + ej, p, for h=1,4.

The estimated responses are quantitatively unchanged relative to the baseline estimates
in Figure 4.

Horizon

: C
FIGURE A7. HEGE Test - Robustness to dropping s;, x G;;_,

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. The sample covers 1970-2007.
The point estimates measures the cumulative percent change in local output per percentage point increase
in the Federal Funds rate.

Back to reference in main text.

Figure A8 plots the estimated responses when using the series of shocks of Aruoba and
Drechsel (2024) instead of the Romer and Romer (2004) shocks. The sample is reduced to
the years between 1980-2007 because of the shock series availability.

Next, I address the plausible concern that the Romer and Romer (2004) series of
monetary shocks could be picking up variation related to the business cycle rather than
pure monetary surprises. To test whether this is the case, I use the eight aggregate shocks
identified by Angeletos, Collard, and Dellas (2020) as drivers of the US business cycle and
add them one-by-one to the HEGE test regression. Formally, I run:

(A88) Yi§+h = by, x sigGngh +Cp X Siglt + dfl x sige]t‘ +Ap+ A +ep,y  for k=18,
where e’; is the Angeletos, Collard, and Dellas (2020) shock to the aggregate variable k. The
authors estimate shocks to: real GDP per capita, consumption (non durables + services),
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% per p.p.
w

Horizon
FIGURE A8. HEGE Test- Differential Response to i; - Aruoba and Drechsel (2024)

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. The sample covers 1980-2007.
The point estimates measures the cumulative percent change in local output per percentage point increase
in the Federal Funds rate.

Back to reference in main text.

investment (gross private domestic investment + durables), hours worked for the non
farm business sector, the unemployment rate, the labor share for the non farm business
sector, the inflation rate (GDP deflator), labor productivity and Fernald’s TFP corrected for
utilization. Figure A9 plots the estimated responses. In all cases, the differential response
to R remains positive and statistically significant and for most shocks the point estimates
lie inside the confidence bands for the baseline specification. The exceptions are the
shocks to hours worked, unemployment and the inflation rate which when added as
controls result in somewhat larger differential responses.

Lastly, I estimate State-specific output elasticities to changes in the interest rate. For
each State j and horizon h, I estimate:

S . .
c _ J ] yC
(A89) th+h = ZE) e, RRy—s+ q)thtfl + ejt+h;
S=
where c{l measures the h periods ahead response of output in State j to a one standard

deviation Romer and Romer (2004) monetary shock. Figure A10 plots the estimated re-
sponses against s;, - the exposure to defense spending used for identification. Each panel
corresponds to a different horizon and the solid black line shows the estimated linear fit.
Estimate State-specific elasticities are positively correlated with s;, at all four horizons.
The estimated linear relationship is statistically significant at least at the 5% level for all
horizons.
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FIGURE A9. HEGE Test - Controlling for shocks in Angeletos, Collard, and Dellas (2020)

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. The sample covers 1970-2007.
Back to reference in main text.
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Back to reference in main text.
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C.2. Decomposition of the US Cross Sectional Multiplier - Additional Results

3.5 N
—— By
3.0 —— g
25

2.04

1.54

1.0

0.5+

0.0

1.0 15 2.0 2.5 3.0 3.5 4.0
Horizon

FIGURE All. Comparison between BZW and [3%5

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. B;TIW is the estimated coefficient
on sl-gGiCt ., using a TWFE specification. Bgs is the estimated coefficient on sigGiCt +p, from the cross-sectional
step of the decomposition framework. Both specifications control for lagged output growth.

Back to reference in main text.
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FIGURE A12. Results using the Real Federal Funds Rate

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. Results from using the estimated
path of the real Federal Funds rate to construct ex-post and ex-ante sequences of counterfactual shocks. All
specifications include the same set of controls as in the baseline. Back to reference in main text.
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B. HEGE Terms
FIGURE A13. Average Exposure Share 1966-2007

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. Results of using the average
exposure to defense spending between 1966-2007 instead of the average during the pre-period.
Back to reference in main text.
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FIGURE A1l4. No Controls in Cross-sectional Regressions

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. Results from dropping the
control for lagged output growth.
Back to reference in main text.
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FIGURE Al5. Adding Lagged Shocks as Controls

Shaded areas correspond to 68% (darker) and 90% (lighter) confidence bands. Results from adding sithC_l as
control in the TWFE regression and, both sithC,l and s;gRR;_1 in the cross-sectional step regression.
Back to reference in main text.
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TABLE A8. Alternative Controls in Cross-sectional Regressions

Spec # Included Controls

: C
Baseline Y |

C . C .
1 Yii 1 Sig X Gy Sig

In(Y;;4)

X RRt—l

2

3 No controls

4 Y 1 Sig < Gy

5 Sig % RR;_1, Sig % Gg_l

6 In(Y;_1), Sig % Gf_ 1, Sig X RRy_1
7

C
Yil‘—l’ Sig X RRt—l
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FIGURE Al6. Alternative Controls

Shaded areas correspond to a one standard deviation. Baseline: Yl-(ts_1 ;1 Yi?—l ) Sig X Gtcf1 s Sig *RR¢-1; 2: In(Yy_1);
c c c C c
3: No controls; 4: Y, Sig x G¢_y; 5 Sjg X RRe—1, Sjg x Gyy; 6:In(Yye_1), Sig ¥ Gy, Sig X RRe—1; 7: Y/, Sjg X RRe-1.

Back to reference in main text.
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Appendix D. Model Details

This section presents a full model of a monetary union with two heterogeneous regions
labeled Home and Foreign. The model is an extension of Nakamura and Steinsson (2014)
to include two types of households - Ricardians and Hand-to-Mouth - as in Herrefio and
Pedemonte (2025). In addition, regions can differ in their (i) household composition,
(ii) intertemporal elasticity of substitution, (iii) size, and (iv) exposure to government
spending shocks.

D.1. Home Households

The total population of the monetary union is normalized to one. The size of the Home
region is n, while the size of the Foreign region is (1 - n). The Home region is populated
by two types of agents - Ricardians and Hand-to-mouth - indexed with subscripts R and C,
respectively. The share of the Home population that is Hand-to-mouth is given by A, Both
households have the same preferences over labor and consumption, but differ in their
access to asset markets. They maximize lifetime utility subject to their budget constraints.

maxEy Y. BU(Cy g v L g evs) ¥V k=GR
s=0

The budget constraints for each type of household are the following:

1-z
(A90) PiChce < (1-Tt)WhtLuce + ( N )YH,t -Tcy,

. z
(A91) PiCy,rt +BH,t+1 < (1 - Tt)Wht LRt + (1 +1t)BH ¢ + WYHJ - TRt

P; is the Home CPI (i.e. the cost of acquiring one unit of the home consumption bundle).
By, are holdings of nominal bonds that pay the national interest rate i;,1. Wy ; is the
nominal wage rate in the Home region. Ly ; ; is per-capita labor supply of households of
type k. Y ; are aggregate nominal profits from firms in the Home region. A share z of
the aggregate profits is transferred to the Ricardian households such that the profits per
capita are given by 1Yy ¢, and similarly for the hand-to-mouth households. Ty i ¢ are
lump-sum taxes levied by the national government on household type k.

The Home final consumption good, Cy  ;, is a CES bundle of Home and Foreign

and CF,

composite goods, CH Hit

Hkt

n-1 1 n-1__71_

1 n-1 1 = 17-
(A92) Crje = [ORCH e " +(1-0m)Ch, 7 " V k=G,R.

I use superscripts to denote the region where production takes place and subscripts to

denote the region where consumption takes place (i.e. CE

H k¢ 1S @ composite of goods
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produced in region F consumed by household type k located in region H). The parameter
n governs the elasticity of substitution between domestic and foreign goods. Parameter
¢ captures the share of Home goods in total consumption and, hence, the extent of
home bias. Both parameters govern the strength of expenditure-switching in response
to changes in relative regional prices. Each regional composite good is a CES bundle of

individual varieties.

0-1 0-1

1 [S) o 1 0 —
H H 0 F F 9o 0
(A93) = fo )Tz 7 Chie=| fo ()7 1dz] 7

where cg) K, .(z) and Cf[, K .(%) denote consumption of Home and Foreign variety z, respec-
tively. The parameter 0 governs the elasticity of substitution between varieties produced
within a given region. Goods trade freely across regions; therefore, both regions face the
same prices for each individual variety. I denote prices at the variety level by p; H(z) and
p¥(2), respectively. Price indexes are defined as follows.

(A94) P = | fo 1 pH}t(z)ledz]lle, Pr; = folpF,t(z)ledz]lle,
and
(A95) Pt_[ »H P g+ (- otPL ”]11

Py,; and Pr ; are the PPI prices indexes of goods produced in the Home and Foreign region,
respectively. As mentioned above, P; is the CPI price index of the Home region. I assume
that preferences are separable in labor and consumption. Concretely,
-1 1
1-of! 3
CH,k,t LH,lZ,t

_1_X 1
_O-H 1+V

U(CH,k,t: LH,k,t) =

where o is the intertemporal elasticity of substitution and v is the Frisch elasticity of labor
supply. Utility maximization by Ricardian households yields a standard Euler equation:

c-o oL
(A96) ﬂ =B(1+ lt+1)

0~
CH R t+1 +1

The intratemporal trade-off between labor and consumption is dictated by:

L\/
(A97) m = (1-m)—

Hkt

,t

k=C,R.
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Note that this trade-off is the same for both Ricardians and hand-to-mouth households.
Lastly, minimization of costs to achieve a given consumption level Cy; ; ;, implies the
following demand schedules:

PH,t ) -1
’

P —
5 F,t) Tl)

H H
(A98) o =d CH,k,t( >

F H
Chr e = (1= ™) Cre(

(pH,t(Z) )_9, (%) = Cg,k,t(m;;@)_e’

(A99) H. (z)=cl
H,k,t H,k,t PH,t F ot

B

for k=C,R.

D.2. Foreign Households

The problem for the Foreign region is symmetric, so I only present some key equations
here. The share of Hand-to-mouth households in the Foreign region is denoted by Af. The
final good bundle of the Foreign region, Cp ; ; is given by:

n-1 n-1__1_
n

L 1 n-i.-1
(A100) Cre = [05Ch,, ™ +(1-dp)CH " | ¥V k=GR,

where ¢y governs the degree of home-bias in the Foreign region. The Foreign Euler
equation for Ricardian households is:

-1

Cx p*
(A101) BRE _B+in=Li,

_oF p*

F,R,t+1 t+1

where P; is the CPI price level in the Foreign region given by:

1
1-

* 1— 1-
(A102) P} = [chPF);] +(1-oF )PH)?] n,

D.3. Risk-sharing condition

Complete markets and the Euler equations of the Home and Foreign region imply the
following risk-sharing condition:

co

F,R,t
(A103) =t wQr,
Crr,t
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where w; = 1 on a balanced growth path and Q; = B¢ is the real exchange rate between
regions in the monetary union. Note that the rlsk-sharmg condition is in terms of Ricardian

consumption only.

D.4. Household Aggregates

Per capita consumption and labor supply in the region r satisfy:

(A104) Crt=NCrci+(1-A)Crrt Lrt=NLyci+(1-N)Lrrs,
for r = H, F. Aggregate consumption and labor supply satisfy:

(A105) Ct=nCh,t + (1-n)Crt, Lt =nLg;+ (1-n)Lp;.

D.5. Production

The problem of Home and Foreign producers is symmetric, therefore, I only detail the
problem for Home firms. There is a continuum of monopolistically competitive producers
of Home varieties, indexed by z, that produce using a technology linear in labor: y; H(z) =
L?I)t(z). They take regional wages as given and set prices subject to a la Calvo stickiness.

PH,t(Z) -
Pyt ’

where Cg ; and Cf,f ; are the per-capita demands for Home goods coming from Home

The demand schedule for the firm Z is given by:

(A106) yH 2)=|nCl .+ (1 -n)CH, +ncH
t H,t F,t t

and Foreign households, respectively. Gt is per-capita government demand of the Home
good.?® Firms take regional wages, Wh,¢, as given such that nominal marginal costs are:

Wh t

H
(A107) MCi (2) = La — (z)

Firms get to reset prices with probability 1 — « every period (Calvo, 1983). They choose
prices to maximize the discounted value of future real profits subject to the demand
schedule in (A106). Concretely, the problem of a firm that gets to reset prices at ¢ is:

W,
Z X /\t+3tyt+s|t(z)[pH t( ) Hyt ] S.t. (A106) B

th<z) al% 1(z)

38This formulation assumes that the government has the same CES preferences over individual varieties as
households.
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where A, g, is the stochastic discount factor of the Ricardian household, py; .(2) is the
optimal reset price and yﬁ y .(z) is the demand faced in period ¢ +s conditional on resetting
prices in period t. The solution to this problem yields the following New-Keynesian
Regional Phillips Curve (NK-RPC) for Home PPI inflation:

(A108) figt = kel + BEe[7ig 141],

where 7t + is the deviation of the Home PPI inflation from a steady state of zero inflation,
kH = w governs the slope of the Home NK-RPC, ric is the deviation of Home
real marginal costs from the steady state marginal costs. See Appendix 2? for a detailed

derivation. Due to the symmetry of the problem, we can express the Foreign NK-RPC as:
~ ~ F ~
(A109) g, = K mic + BE[Ap, a1,

where k¥ and «" differ whenever the degree of price stickiness is heterogeneous between
regions.

D.6. Government

The government consumes Home and Foreign varieties and raises revenues through lump-
sum and income taxes on households. Government consumption follows an AR(1) process
and its within-region composition mimics that of private consumption.3® Per-capita total
demand for Home and Foreign goods is:

G
(A110) Gfl = pgGss + (1- pg)Ggl + e‘gH +e; h

G
(A].].].) Gf = ng’ss + (1 - pg)Gf_l + e‘?F + et f,

where Gg; is the steady-state participation of government spending in output, which I
assume is common between regions. The parameter pg governs the persistence of fiscal
shocks. Regional government spending is subject to two different idiosyncratic shocks:
e‘fk and e?k for k = H, F. The first one is a purely region-specific shock as in Nakamura and
Steinsson (2014). The process for the second one, efk, is as follows:

Gy _SH G G _(1-sH) ¢
(A].].Z) etszet, etF:W, €

39This implies that per-capita government spending in varieties from the Home and Foreign region are
given by:

pH,t(z) )‘9

pF,t(z) )‘e
Py )

H _ ~H
&' (z) = GI'( Prs

g (=) = G (
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where etG is an aggregate fiscal shock that loads differently between regions. The per

capita loadings are given by *Z and %, respectively. The case where s, = n represents
a government spending shock that hits all regions with equal intensity. The structure
of this new shock mimics the Bartik-type instruments that are encountered in the local
multipliers literature and results in a closer map between the model and the data.*? Lastly,
total government spending Gy satisfies:

(A113) Gy =nGH + (1-n)GE.

The government follows a balanced budget where

(A114) Gt = Tt + To( Wi e Lpr,s + (1 - n)Wr,iLF,1 ),
where T; are the total lump sum taxes.

D.7. Monetary Policy

The national monetary authority sets the nominal interest rate following a Taylor rule:

(A115) i = pjir1 + (1- ;) (iss + WrTTEEE + 4, 7768),

where hat’s over a variable indicate deviations from the zero inflation steady state. ﬂ?gg

is aggregate inflation, defined by n?gg = nlT + (1 - n)TT;. T and I} are the CPI inflation
rates in the Home and Foreign region, respectively. The national output gap is defined by
~agg ~H A F
Vi =nyp +(1-n)y;.

D.8. Market Clearing

Per capita Home and Foreign output are

1 1 1 1
(Al16) v -~ fo yH(2)dz, v - — fo P (2)dz.
Then, the total output is

(A117) Y =nYl+ (1-n)YY.

*0The reason is that in a setting where aggregate policies are not completely differenced-out, the size of the
aggregate response becomes relevant. It therefore makes a difference whether we study a fiscal shock to
a marginal region versus an aggregate and sizable increase in government spending that loads differently
across regions. The aggregate responses to these two types of shocks will be different. In the extreme, a shock
to an infinitesimal region would trigger an infinitesimal aggregate response, so whether this is differenced
out or not will likely not matter much.
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Clearing of the goods market requires the following.

(A118) nyfl = ncg}t +(1- n)Cﬁ{t +nGH,

(A119) (1-n)Y{ = anI’tJr(l—n)Cf:’tJr(l—n)Gf,
where all variables refer to amounts per capita.

D.9. Calibration

Table A9 summarizes the calibration. I stick to the calibration in Nakamura and Steinsson
(2014) for most parameters. The first part of the table presents all parameters that are
the same in both papers. In the second part of the table, I show parameter choices that
differ from Nakamura and Steinsson (2014) or are newly introduced in this paper. The
baseline calibration sets A; = 0 and generates heterogeneous interest rate sensitivities
through differences in the IES of Ricardian households. These are set to 0" = 1.25 and
of = 75. The parameter sg, which governs the degree of Home bias in the aggregate
government spending shock, e?, is set to .8. This implies that the Home region is relatively

more exposed to government spending shocks.

TABLE A9. Baseline Calibration

A, First Set of Parameters

B Discount factor 99
v Frisch Elasticity of Labor Supply 1
n Elasticity of Substitution between Home and Foreign Goods 2
0 Elasticity of Substitution between individual varieties 7
a Labor Coefficient in Production Function .63
iss Steady-state Nominal Rate .01
Gss Participation of Government Spending in Steady State 2
T Income Tax Rate 0
bu Home Bias in Home Region .85
o« Degree of Price Stickiness 75
P; Persistence of Monetary Policy Rule .8
bn Inflation Coefficient in Taylor Rule 1.5
by Output Coefficient in Taylor Rule 1
B. Second set of Parameters

n Size of Home Region 5
z Ricardian Participation in Profits 1
Ar Share of Hand-to-Mouth in Region r 0
o (o) IES of Ricardian Households in Home (Foreign) region 1.25 (.75)
sH Home Bias of Aggregate Government Spending Shock 8
Pg Persistence of Government Spending .85

Back to DSGE Monte Carlo exercise in forward-looking decomposition framework.
Back to Subsection 5.2.
Back to Subsection 5.4 - matching model and data.

A-45



	Introduction
	When does HEGE challenge portability?
	Test for HEGE

	Decomposition Framework
	Static Setting
	Dynamic Markov Settings - No anticipation effects 
	Forward-Looking Dynamic Setting
	Inference

	Empirical Application - US Cross-sectional Fiscal Multiplier
	HEGE Test
	Time-Series Step
	Cross-sectional step
	Portable Multiplier Estimate

	Model
	Anatomy of the NK Cross-sectional Fiscal Multiplier
	Pitfalls of Failing to Control for HEGE
	Performance of the Decomposition with Limited Information
	Empirical Results Through the Lens of the Model

	Conclusion
	 Appendix
	Decomposition Framework - Additional Derivations and Results
	Static Setting - Further Details
	Decomposition a la sims1995does - Further Details 
	Dynamic Setting without Anticipation Effects - Further Details
	Control Function Approach in Dynamic Settings
	Dynamic Setting - Monte Carlo Simulations
	Two-Way GE Feedback - Two Sources of Omitted Variable Bias
	Robustness to cov[gt, At] 0

	Forward-Looking Settings - Further Details
	DSGE Monte Carlo Simulations
	Inference using a GMM Setup
	Standard Errors

	Data
	Estimation Results
	HEGE Test - Robustness
	Decomposition of the US Cross Sectional Multiplier - Additional Results

	Model Details
	Home Households
	Foreign Households 
	Risk-sharing condition
	Household Aggregates
	Production
	Government
	Monetary Policy
	Market Clearing
	Calibration



